J Knee Surg 2020; 33(11): 1056-1068
DOI: 10.1055/s-0040-1712944
Special Focus Section

Clinical Application of the Basic Science of Articular Cartilage Pathology and Treatment

1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
3   BG Center for Trauma and Reconstructive Surgery, Eberhard Karls University of Tübingen, Tübingen, Germany
,
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
,
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
› Author Affiliations

Abstract

The joint is an organ with each tissue playing critical roles in health and disease. Intact articular cartilage is an exquisite tissue that withstands incredible biologic and biomechanical demands in allowing movement and function, which is why hyaline cartilage must be maintained within a very narrow range of biochemical composition and morphologic architecture to meet demands while maintaining health and integrity. Unfortunately, insult, injury, and/or aging can initiate a cascade of events that result in erosion, degradation, and loss of articular cartilage such that joint pain and dysfunction ensue. Importantly, articular cartilage pathology affects the health of the entire joint and therefore should not be considered or addressed in isolation. Treating articular cartilage lesions is challenging because left alone, the tissue is incapable of regeneration or highly functional and durable repair. Nonoperative treatments can alleviate symptoms associated with cartilage pathology but are not curative or lasting. Current surgical treatments range from stimulation of intrinsic repair to whole-surface and whole-joint restoration. Unfortunately, there is a relative paucity of prospective, randomized controlled, or well-designed cohort-based clinical trials with respect to cartilage repair and restoration surgeries, such that there is a gap in knowledge that must be addressed to determine optimal treatment strategies for this ubiquitous problem in orthopedic health care. This review article discusses the basic science rationale and principles that influence pathology, symptoms, treatment algorithms, and outcomes associated with articular cartilage defects in the knee.

Authors' Contributions

J.L.C., A.J.S., A.M.S., C.C.B., K.K., and J.P.S. provided substantial contributions to research design, acquisition, analysis, and interpretation of data. A.J.S. and J.L.C. supported in drafting the paper and revising it critically. All authors have read and approved the final submitted manuscript.




Publication History

Received: 06 April 2020

Accepted: 16 April 2020

Article published online:
24 June 2020

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science 2012; 338 (6109): 917-921
  • 2 Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med 2017; 36 (03) 413-425
  • 3 Kuroki K, Stoker AM, Stannard JP. et al. Biologic joint repair strategies: the Mizzou BioJoint story. Toxicol Pathol 2017; 45 (07) 931-938
  • 4 Brocklehurst R, Bayliss MT, Maroudas A. et al. The composition of normal and osteoarthritic articular cartilage from human knee joints. With special reference to unicompartmental replacement and osteotomy of the knee. J Bone Joint Surg Am 1984; 66 (01) 95-106
  • 5 Armiento AR, Stoddart MJ, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater 2018; 65: 1-20
  • 6 Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O'Keefe RJ. Articular cartilage biology. J Am Acad Orthop Surg 2003; 11 (06) 421-430
  • 7 Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13 (04) 456-460
  • 8 Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 2007; 14 (03) 177-182
  • 9 Hunt N, Sanchez-Ballester J, Pandit R, Thomas R, Strachan R. Chondral lesions of the knee: a new localization method and correlation with associated pathology. Arthroscopy 2001; 17 (05) 481-490
  • 10 Zevenbergen L, Smith CR, Van Rossom S. et al. Cartilage defect location and stiffness predispose the tibiofemoral joint to aberrant loading conditions during stance phase of gait. PLoS One 2018; 13 (10) e0205842
  • 11 Marchi BC, Arruda EM, Coleman R. The effect of articular cartilage focal defect size and location in whole knee biomechanics models. J Biomech Eng 2019; DOI: 10.1115/1.4044032.
  • 12 Loening AM, James IE, Levenston ME. et al. Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis. Arch Biochem Biophys 2000; 381 (02) 205-212
  • 13 Thompson Jr RC, Oegema Jr TR, Lewis JL, Wallace L. Osteoarthrotic changes after acute transarticular load. An animal model. J Bone Joint Surg Am 1991; 73 (07) 990-1001
  • 14 Weightman B. Tensile fatigue of human articular cartilage. J Biomech 1976; 9 (04) 193-200
  • 15 Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res 2002; (402) 21-37
  • 16 Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961; 43-B: 752-757
  • 17 Brittberg M, Peterson L. Introduction of an articular cartilage classification. ICRS Newsletter 1998; 1 (01) 5-8
  • 18 Simon TM, Jackson DW. Articular cartilage: injury pathways and treatment options. Sports Med Arthrosc Rev 2018; 26 (01) 31-39
  • 19 Decker RS, Koyama E, Pacifici M. Articular cartilage: structural and developmental intricacies and questions. Curr Osteoporos Rep 2015; 13 (06) 407-414
  • 20 Elsaid KA, Jay GD, Warman ML, Rhee DK, Chichester CO. Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis. Arthritis Rheum 2005; 52 (06) 1746-1755
  • 21 Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cell Mater 2005; 9: 23-32 , discussion 23–32
  • 22 Yoshioka M, Kubo T, Coutts RD, Hirasawa Y. Differences in the repair process of longitudinal and transverse injuries of cartilage in the rat knee. Osteoarthritis Cartilage 1998; 6 (01) 66-75
  • 23 Borrelli Jr J, Ricci WM. Acute effects of cartilage impact. Clin Orthop Relat Res 2004; (423) 33-39
  • 24 Monibi F, Roller BL, Stoker A, Garner B, Bal S, Cook JL. Identification of synovial fluid biomarkers for knee osteoarthritis and correlation with radiographic assessment. J Knee Surg 2016; 29 (03) 242-247
  • 25 Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum 2001; 44 (03) 585-594
  • 26 Scanzello CR, Plaas A, Crow MK. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound?. Curr Opin Rheumatol 2008; 20 (05) 565-572
  • 27 Seitz M, Loetscher P, Dewald B, Towbin H, Ceska M, Baggiolini M. Production of interleukin-1 receptor antagonist, inflammatory chemotactic proteins, and prostaglandin E by rheumatoid and osteoarthritic synoviocytes--regulation by IFN-gamma and IL-4. J Immunol 1994; 152 (04) 2060-2065
  • 28 Martel-Pelletier J, Barr AJ, Cicuttini FM. et al. Osteoarthritis. Nat Rev Dis Primers 2016; 2: 16072
  • 29 Bhattaram P, Chandrasekharan U. The joint synovium: a critical determinant of articular cartilage fate in inflammatory joint diseases. Semin Cell Dev Biol 2017; 62: 86-93
  • 30 Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol 2011; 23 (05) 471-478
  • 31 Hulejová H, Baresová V, Klézl Z, Polanská M, Adam M, Senolt L. Increased level of cytokines and matrix metalloproteinases in osteoarthritic subchondral bone. Cytokine 2007; 38 (03) 151-156
  • 32 Borzì RM, Mazzetti I, Cattini L, Uguccioni M, Baggiolini M, Facchini A. Human chondrocytes express functional chemokine receptors and release matrix-degrading enzymes in response to C-X-C and C-C chemokines. Arthritis Rheum 2000; 43 (08) 1734-1741
  • 33 Borden P, Solymar D, Sucharczuk A, Lindman B, Cannon P, Heller RA. Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes. J Biol Chem 1996; 271 (38) 23577-23581
  • 34 Villiger PM, Terkeltaub R, Lotz M. Production of monocyte chemoattractant protein-1 by inflamed synovial tissue and cultured synoviocytes. J Immunol 1992; 149 (02) 722-727
  • 35 Stannard JP, Cook JL, Farr J. Articular Cartilage Injury of the Knee: Basic Science to Surgical Repair. New York: Thieme; 2013
  • 36 Pozgan U, Caglic D, Rozman B, Nagase H, Turk V, Turk B. Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol Chem 2010; 391 (05) 571-579
  • 37 Saltzman BM, Riboh JC. Subchondral bone and the osteochondral unit: basic science and clinical implications in sports medicine. Sports Health 2018; 10 (05) 412-418
  • 38 Brown TD, Vrahas MS. The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head. J Orthop Res 1984; 2 (01) 32-38
  • 39 Kuroki K, Cook CR, Cook JL. Subchondral bone changes in three different canine models of osteoarthritis. Osteoarthritis Cartilage 2011; 19 (09) 1142-1149
  • 40 Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012; 64 (06) 1697-1707
  • 41 Kraus VB, Burnett B, Coindreau J. , et al; OARSI FDA Osteoarthritis Biomarkers Working Group. Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthritis Cartilage 2011; 19 (05) 515-542
  • 42 Roller BL, Monibi F, Stoker AM, Bal BS, Cook JL. Identification of novel synovial fluid biomarkers associated with meniscal pathology. J Knee Surg 2016; 29 (01) 47-62
  • 43 Waters NP, Stoker AM, Carson WL, Pfeiffer FM, Cook JL. Biomarkers affected by impact velocity and maximum strain of cartilage during injury. J Biomech 2014; 47 (12) 3185-3195
  • 44 Waters NP, Stoker AM, Pfeiffer FM, Cook JL. Biomarkers affected by impact severity during osteochondral injury. J Knee Surg 2015; 28 (03) 191-200
  • 45 Garner BC, Stoker AM, Kuroki K, Evans R, Cook CR, Cook JL. Using animal models in osteoarthritis biomarker research. J Knee Surg 2011; 24 (04) 251-264
  • 46 Heir S, Nerhus TK, Røtterud JH. et al. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med 2010; 38 (02) 231-237
  • 47 Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH. Prevalence of chondral defects in athletes' knees: a systematic review. Med Sci Sports Exerc 2010; 42 (10) 1795-1801
  • 48 Arøen A, Løken S, Heir S. et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004; 32 (01) 211-215
  • 49 Żylińska B, Silmanowicz P, Sobczyńska-Rak A, Jarosz Ł, Szponder T. Treatment of articular cartilage defects: focus on tissue engineering. In Vivo 2018; 32 (06) 1289-1300
  • 50 Kamarul T, Ab-Rahim S, Tumin M, Selvaratnam L, Ahmad TS. A preliminary study of the effects of glucosamine sulphate and chondroitin sulphate on surgically treated and untreated focal cartilage damage. Eur Cell Mater 2011; 21: 259-271 , discussion 270–271
  • 51 Hildner F, Albrecht C, Gabriel C, Redl H, van Griensven M. State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. J Tissue Eng Regen Med 2011; 5 (04) e36-e51
  • 52 Bannuru RR, Osani MC, Vaysbrot EE. et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage 2019; 27 (11) 1578-1589
  • 53 Filardo G, Kon E, Longo UG. et al. Non-surgical treatments for the management of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2016; 24 (06) 1775-1785
  • 54 Kon E, Filardo G, Drobnic M. et al. Non-surgical management of early knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2012; 20 (03) 436-449
  • 55 Mandelbaum BR, ElAttrache NS. Articular cartilage repair techniques. Sports Med Arthrosc Rev 2016; 24 (02) 43
  • 56 Behery O, Siston RA, Harris JD, Flanigan DC. Treatment of cartilage defects of the knee: expanding on the existing algorithm. Clin J Sport Med 2014; 24 (01) 21-30
  • 57 Rath B, Eschweiler J, Betsch M, Gruber G. [Cartilage repair of the knee joint]. Orthopade 2017; 46 (11) 919-927
  • 58 Ozmeriç A, Alemdaroğlu KB, Aydoğan NH. Treatment for cartilage injuries of the knee with a new treatment algorithm. World J Orthop 2014; 5 (05) 677-684
  • 59 Niemeyer P, Feucht MJ, Fritz J, Albrecht D, Spahn G, Angele P. Cartilage repair surgery for full-thickness defects of the knee in Germany: indications and epidemiological data from the German Cartilage Registry (KnorpelRegister DGOU). Arch Orthop Trauma Surg 2016; 136 (07) 891-897
  • 60 Redondo ML, Naveen NB, Liu JN, Tauro TM, Southworth TM, Cole BJ. Preservation of Knee Articular Cartilage. Sports Med Arthrosc Rev 2018; 26 (04) e23-e30
  • 61 Brittberg M, Gomoll AH, Canseco JA, Far J, Lind M, Hui J. Cartilage repair in the degenerative ageing knee. Acta Orthop 2016; 87 (Suppl. 363) 26-38
  • 62 Kreuz PC, Müller S, Freymann U. et al. Repair of focal cartilage defects with scaffold-assisted autologous chondrocyte grafts: clinical and biomechanical results 48 months after transplantation. Am J Sports Med 2011; 39 (08) 1697-1705
  • 63 Buckwalter JA. Evaluating methods of restoring cartilaginous articular surfaces. Clin Orthop Relat Res 1999; (367) S224-S238
  • 64 Gao L, Goebel LKH, Orth P, Cucchiarini M, Madry H. Subchondral drilling for articular cartilage repair: a systematic review of translational research. Dis Model Mech 2018; 11 (06) dmm034280
  • 65 Johnson LL. Arthroscopic abrasion arthroplasty: a review. Clin Orthop Relat Res 2001; (391) S306-S317
  • 66 Steadman JR, Rodkey WG, Briggs KK. Microfracture: its history and experience of the developing surgeon. Cartilage 2010; 1 (02) 78-86
  • 67 Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc 2020; 28 (03) 670-706
  • 68 Bert JM. Role of abrasion arthroplasty and debridement in the management of osteoarthritis of the knee. Rheum Dis Clin North Am 1993; 19 (03) 725-739
  • 69 Steinwachs MR, Guggi T, Kreuz PC. Marrow stimulation techniques. Injury 2008; 39 (Suppl. 01) S26-S31
  • 70 Farr J, Cole B, Dhawan A, Kercher J, Sherman S. Clinical cartilage restoration: evolution and overview. Clin Orthop Relat Res 2011; 469 (10) 2696-2705
  • 71 Ficat RP, Ficat C, Gedeon P, Toussaint JB. Spongialization: a new treatment for diseased patellae. Clin Orthop Relat Res 1979; (144) 74-83
  • 72 Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy 1986; 2 (01) 54-69
  • 73 Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001; (391) S362-S369
  • 74 Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003; 19 (05) 477-484
  • 75 Schenker H, Wild M, Rath B. et al. [Current overview of cartilage regeneration procedures]. Orthopade 2017; 46 (11) 907-913
  • 76 Shaikh N, Seah MKT, Khan WS. Systematic review on the use of autologous matrix-induced chondrogenesis for the repair of articular cartilage defects in patients. World J Orthop 2017; 8 (07) 588-601
  • 77 Benthien JP, Behrens P. Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note. Int Orthop 2013; 37 (11) 2139-2145
  • 78 Zedde P, Cudoni S, Giachetti G. et al. Subchondral bone remodeling: comparing nanofracture with microfracture. An ovine in vivo study. Joints 2016; 4 (02) 87-93
  • 79 Mancò A, Goderecci R, Rughetti A. et al. Microfracture versus microfracture and platelet-rich plasma: arthroscopic treatment of knee chondral lesions. A two-year follow-up study. Joints 2016; 4 (03) 142-147
  • 80 Benthien JP, Behrens P. The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc 2011; 19 (08) 1316-1319
  • 81 Cheng NC, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A 2009; 15 (02) 231-241
  • 82 Woodmass JM, Melugin HP, Wu IT, Saris DBF, Stuart MJ, Krych AJ. Viable osteochondral allograft for the treatment of a full-thickness cartilage defect of the patella. Arthrosc Tech 2017; 6 (05) e1661-e1665
  • 83 Geraghty S, Kuang JQ, Yoo D, LeRoux-Williams M, Vangsness Jr CT, Danilkovitch A. A novel, cryopreserved, viable osteochondral allograft designed to augment marrow stimulation for articular cartilage repair. J Orthop Surg Res 2015; 10: 66
  • 84 Chubinskaya S, Di Matteo B, Lovato L, Iacono F, Robinson D, Kon E. Agili-C implant promotes the regenerative capacity of articular cartilage defects in an ex vivo model. Knee Surg Sports Traumatol Arthrosc 2019; 27 (06) 1953-1964
  • 85 Matta C, Szűcs-Somogyi C, Kon E. et al. Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is enhanced by an aragonite scaffold. Differentiation 2019; 107: 24-34
  • 86 Zamborsky R, Danisovic L. Surgical techniques for knee cartilage repair: an updated large-scale systematic review and network meta-analysis of randomized controlled trials. Arthroscopy 2020; 36 (03) 845-858
  • 87 Gou GH, Tseng FJ, Wang SH. et al. Autologous chondrocyte implantation versus microfracture in the knee: a meta-analysis and systematic review. Arthroscopy 2020; 36 (01) 289-303
  • 88 Na Y, Shi Y, Liu W. et al. Is implantation of autologous chondrocytes superior to microfracture for articular-cartilage defects of the knee? A systematic review of 5-year follow-up data. Int J Surg 2019; 68: 56-62
  • 89 Müller PE, Gallik D, Hammerschmid F. et al. Third-generation autologous chondrocyte implantation after failed bone marrow stimulation leads to inferior clinical results. Knee Surg Sports Traumatol Arthrosc 2020; 28 (02) 470-477
  • 90 Lamplot JD, Schafer KA, Matava MJ. Treatment of failed articular cartilage reconstructive procedures of the knee: a systematic review. Orthop J Sports Med 2018; 6 (03) 2325967118761871
  • 91 Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 2009; 37 (05) 902-908
  • 92 Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 1986; (213) 34-40
  • 93 Wakitani S, Goto T, Pineda SJ. et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 1994; 76 (04) 579-592
  • 94 Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma 2006; 20 (10) 739-744
  • 95 Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 1997; 79 (10) 1439-1451
  • 96 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331 (14) 889-895
  • 97 Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop Relat Res 2001; (391) S349-S361
  • 98 Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 2006; 13 (03) 203-210
  • 99 Goyal D, Goyal A, Keyhani S, Lee EH, Hui JH. Evidence-based status of second- and third-generation autologous chondrocyte implantation over first generation: a systematic review of level I and II studies. Arthroscopy 2013; 29 (11) 1872-1878
  • 100 Barlic A, Drobnic M, Malicev E, Kregar-Velikonja N. Quantitative analysis of gene expression in human articular chondrocytes assigned for autologous implantation. J Orthop Res 2008; 26 (06) 847-853
  • 101 Harris JD, Siston RA, Brophy RH, Lattermann C, Carey JL, Flanigan DC. Failures, re-operations, and complications after autologous chondrocyte implantation--a systematic review. Osteoarthritis Cartilage 2011; 19 (07) 779-791
  • 102 Lu Y, Dhanaraj S, Wang Z. et al. Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res 2006; 24 (06) 1261-1270
  • 103 Frisbie DD, Lu Y, Kawcak CE, DiCarlo EF, Binette F, McIlwraith CW. In vivo evaluation of autologous cartilage fragment-loaded scaffolds implanted into equine articular defects and compared with autologous chondrocyte implantation. Am J Sports Med 2009; 37 (Suppl. 01) 71S-80S
  • 104 Bonner KF, Daner W, Yao JQ. 2-year postoperative evaluation of a patient with a symptomatic full-thickness patellar cartilage defect repaired with particulated juvenile cartilage tissue. J Knee Surg 2010; 23 (02) 109-114
  • 105 Frank RM, McCormick F, Rosas S. et al. Reoperation rates after cartilage restoration procedures in the knee: analysis of a large us commercial database. Am J Orthop (Belle Mead NJ) 2018; 47 (06) DOI: 10.12788/ajo.2018.0040.
  • 106 Outerbridge HK, Outerbridge AR, Outerbridge RE. The use of a lateral patellar autologous graft for the repair of a large osteochondral defect in the knee. J Bone Joint Surg Am 1995; 77 (01) 65-72
  • 107 Hangody L, Kish G, Kárpáti Z, Szerb I, Udvarhelyi I. Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc 1997; 5 (04) 262-267
  • 108 Richter DL, Tanksley JA, Miller MD. Osteochondral autograft transplantation: a review of the surgical technique and outcomes. Sports Med Arthrosc Rev 2016; 24 (02) 74-78
  • 109 Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams III RJ. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 2017; 25 (10) 3186-3196
  • 110 Pareek A, Reardon PJ, Maak TG, Levy BA, Stuart MJ, Krych AJ. Long-term outcomes after osteochondral autograft transfer: a systematic review at mean follow-up of 10.2 years. Arthroscopy 2016; 32 (06) 1174-1184
  • 111 Inderhaug E, Solheim E. Osteochondral autograft transplant (mosaicplasty) for knee articular cartilage defects. JBJS Essential Surg Tech 2019; 9 (04) 1-2
  • 112 Andrade R, Vasta S, Pereira R. et al. Knee donor-site morbidity after mosaicplasty - a systematic review. J Exp Orthop 2016; 3 (01) 31
  • 113 Levy AS, Meier SW. Osteochondral Autograft Replacement. Articular Cartilage Lesions. New York: Springer; 2004
  • 114 Erol MF, Karakoyun O. A new point of view for mosaicplasty in the treatment of focal cartilage defects of knee joint: honeycomb pattern. Springerplus 2016; 5 (01) 1170
  • 115 Bugbee WD, Convery FR. Osteochondral allograft transplantation. Clin Sports Med 1999; 18 (01) 67-75
  • 116 Familiari F, Cinque ME, Chahla J. et al. Clinical outcomes and failure rates of osteochondral allograft transplantation in the knee: a systematic review. Am J Sports Med 2018; 46 (14) 3541-3549
  • 117 Rucinski K, Cook JL, Crecelius CR, Stucky R, Stannard JP. Effects of compliance with procedure-specific postoperative rehabilitation protocols on initial outcomes after osteochondral and meniscal allograft transplantation in the knee. Orthop J Sports Med 2019; 7 (11) 2325967119884291
  • 118 Stannard JP, Cook JL. Prospective assessment of outcomes after primary unipolar, multisurface, and bipolar osteochondral allograft transplantations in the knee: a comparison of two preservation methods. Am J Sports Med 2020; 48 (06) 1356-1364
  • 119 Stoker AM, Stannard JP, Kuroki K, Bozynski CC, Pfeiffer FM, Cook JL. Validation of the Missouri Osteochondral Allograft Preservation System for the maintenance of osteochondral allograft quality during prolonged storage. Am J Sports Med 2018; 46 (01) 58-65
  • 120 Cook JL, Cook CR, Stannard JP. et al. MRI versus ultrasonography to assess meniscal abnormalities in acute knees. J Knee Surg 2014; 27 (04) 319-324
  • 121 Stoker AM, Caldwell KM, Stannard JP, Cook JL. Metabolic responses of osteochondral allografts to re-warming. J Orthop Res 2019; 37 (07) 1530-1536
  • 122 Cook JL, Stannard JP, Stoker AM. et al. Importance of donor chondrocyte viability for osteochondral allografts. Am J Sports Med 2016; 44 (05) 1260-1268
  • 123 Stoker AM, Stannard JP, Cook JL. Chondrocyte viability at time of transplantation for osteochondral allografts preserved by the Missouri Osteochondral Preservation System versus standard tissue bank protocol. J Knee Surg 2018; 31 (08) 772-780
  • 124 Stoker AM, Baumann CA, Stannard JP, Cook JL. Bone marrow aspirate concentrate versus platelet rich plasma to enhance osseous integration potential for osteochondral allografts. J Knee Surg 2018; 31 (04) 314-320
  • 125 Zouzias IC, Bugbee WD. Osteochondral allograft transplantation in the knee. Sports Med Arthrosc Rev 2016; 24 (02) 79-84
  • 126 Nuelle CW, Nuelle JA, Cook JL, Stannard JP. Patient factors, donor age, and graft storage duration affect osteochondral allograft outcomes in knees with or without comorbidities. J Knee Surg 2017; 30 (02) 179-184
  • 127 Sherman SL, Garrity J, Bauer K, Cook J, Stannard J, Bugbee W. Fresh osteochondral allograft transplantation for the knee: current concepts. J Am Acad Orthop Surg 2014; 22 (02) 121-133
  • 128 Gross AE, Kim W, Las Heras F, Backstein D, Safir O, Pritzker KP. Fresh osteochondral allografts for posttraumatic knee defects: long-term followup. Clin Orthop Relat Res 2008; 466 (08) 1863-1870
  • 129 Thomas DM, Stannard JP, Pfeiffer FM, Cook JL. Biomechanical properties of bioabsorbable fixation for osteochondral shell allografts. J Knee Surg 2020; 33 (04) 365-371
  • 130 Smith PA, Humpherys JL, Stannard JP, Cook JL. Impact of medial meniscotibial ligament disruption compared to peripheral medial meniscal tear on knee biomechanics. J Knee Surg 2020; DOI: 10.1055/s-0039-3402483.
  • 131 Baumann CA, Baumann JR, Bozynski CC, Stoker AM, Stannard JP, Cook JL. Comparison of techniques for preimplantation treatment of osteochondral allograft bone. J Knee Surg 2019; 32 (01) 97-104
  • 132 Oladeji LO, Stannard JP, Cook CR. et al. Effects of autogenous bone marrow aspirate concentrate on radiographic integration of femoral condylar osteochondral allografts. Am J Sports Med 2017; 45 (12) 2797-2803
  • 133 Cole BJ, Redondo ML, Cotter EJ. Articular cartilage injuries of the knee: patient health literacy, expectations for management, and clinical outcomes. Cartilage 2018; •••: 1947603518816429
  • 134 Hunt HE, Sadr K, Deyoung AJ, Gortz S, Bugbee WD. The role of immunologic response in fresh osteochondral allografting of the knee. Am J Sports Med 2014; 42 (04) 886-891
  • 135 Kandel RA, Gross AE, Ganel A, McDermott AG, Langer F, Pritzker KP. Histopathology of failed osteoarticular shell allografts. Clin Orthop Relat Res 1985; (197) 103-110
  • 136 Langer F, Gross AE, West M, Urovitz EP. The immunogenicity of allograft knee joint transplants. Clin Orthop Relat Res 1978; (132) 155-162
  • 137 Sirlin CB, Brossmann J, Boutin RD. et al. Shell osteochondral allografts of the knee: comparison of mr imaging findings and immunologic responses. Radiology 2001; 219 (01) 35-43
  • 138 Stevenson S, Shaffer JW, Goldberg VM. The humoral response to vascular and nonvascular allografts of bone. Clin Orthop Relat Res 1996; (326) 86-95
  • 139 Cook JL, Stoker AM, Stannard JP. et al. A novel system improves preservation of osteochondral allografts. Clin Orthop Relat Res 2014; 472 (11) 3404-3414
  • 140 Chahal J, Gross AE, Gross C. et al. Outcomes of osteochondral allograft transplantation in the knee. Arthroscopy 2013; 29 (03) 575-588
  • 141 Cotter EJ, Hannon CP, Christian DR. et al. Clinical outcomes of multifocal osteochondral allograft transplantation of the knee: an analysis of overlapping grafts and multifocal lesions. Am J Sports Med 2018; 46 (12) 2884-2893
  • 142 Walter SG, Ossendorff R, Schildberg FA. Articular cartilage regeneration and tissue engineering models: a systematic review. Arch Orthop Trauma Surg 2019; 139 (03) 305-316
  • 143 Guillén-García P, Rodríguez-Iñigo E, Guillén-Vicente I. et al. Increasing the dose of autologous chondrocytes improves articular cartilage repair: histological and molecular study in the sheep animal model. Cartilage 2014; 5 (02) 114-122
  • 144 Mifune Y, Matsumoto T, Murasawa S. et al. Therapeutic superiority for cartilage repair by CD271-positive marrow stromal cell transplantation. Cell Transplant 2013; 22 (07) 1201-1211
  • 145 Liu J, Nie H, Xu Z. et al. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects. PLoS One 2014; 9 (11) e111566
  • 146 de Windt TS, Vonk LA, Slaper-Cortenbach IC. et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells 2017; 35 (01) 256-264
  • 147 Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52 (08) 2521-2529
  • 148 Madry H, Orth P, Cucchiarini M. Gene therapy for cartilage repair. Cartilage 2011; 2 (03) 201-225
  • 149 Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet 1999; 22 (01) 85-89
  • 150 Hunziker EB. Growth-factor-induced healing of partial-thickness defects in adult articular cartilage. Osteoarthritis Cartilage 2001; 9 (01) 22-32
  • 151 Reboredo JW, Weigel T, Steinert A, Rackwitz L, Rudert M, Walles H. Investigation of migration and differentiation of human mesenchymal stem cells on five-layered collagenous electrospun scaffold mimicking native cartilage structure. Adv Healthc Mater 2016; 5 (17) 2191-2198
  • 152 Ferris CJ, Gilmore KG, Wallace GG, In het Panhuis M. Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 2013; 97 (10) 4243-4258
  • 153 Di Bella C, Duchi S, O'Connell CD. et al. In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med 2018; 12 (03) 611-621
  • 154 Cigan AD, Roach BL, Nims RJ. et al. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties. J Biomech 2016; 49 (09) 1909-1917
  • 155 Silverstein AM, Stoker AM, Ateshian GA, Bulinski JC, Cook JL, Hung CT. Transient expression of the diseased phenotype of osteoarthritic chondrocytes in engineered cartilage. J Orthop Res 2017; 35 (04) 829-836
  • 156 Lima EG, Tan AR, Tai T. et al. Differences in interleukin-1 response between engineered and native cartilage. Tissue Eng Part A 2008; 14 (10) 1721-1730
  • 157 Bayliss LE, Culliford D, Monk AP. et al. The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: a population-based cohort study. Lancet 2017; 389 (10077): 1424-1430
  • 158 Khan M, Osman K, Green G, Haddad FS. The epidemiology of failure in total knee arthroplasty: avoiding your next revision. Bone Joint J 2016; 98-B (01) 105-112
  • 159 Wainwright C, Theis JC, Garneti N, Melloh M. Age at hip or knee joint replacement surgery predicts likelihood of revision surgery. J Bone Joint Surg Br 2011; 93 (10) 1411-1415
  • 160 Sakellariou VI, Poultsides LA, Ma Y, Bae J, Liu S, Sculco TP. Risk assessment for chronic pain and patient satisfaction after total knee arthroplasty. Orthopedics 2016; 39 (01) 55-62
  • 161 Valtanen RS, Arshi A, Kelley BV, Fabricant PD, Jones KJ. Articular cartilage repair of the pediatric and adolescent knee with regard to minimal clinically important difference: a systematic review. Cartilage 2020; 11 (01) 9-18
  • 162 Patel JM, Wise BC, Bonnevie ED, Mauck RL. A systematic review and guide to mechanical testing for articular cartilage tissue engineering. Tissue Eng Part C Methods 2019; 25 (10) 593-608
  • 163 Hurtig MB, Fretz PB, Doige CE, Schnurr DL. Effects of lesion size and location on equine articular cartilage repair. Can J Vet Res 1988; 52 (01) 137-146
  • 164 O'Driscoll SW, Salter RB. The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res 1986; (208) 131-140
  • 165 Gross AE, Shasha N, Aubin P. Long-term followup of the use of fresh osteochondral allografts for posttraumatic knee defects. Clin Orthop Relat Res 2005; (435) 79-87
  • 166 Gomoll AH. High tibial osteotomy for the treatment of unicompartmental knee osteoarthritis: a review of the literature, indications, and technique. Phys Sportsmed 2011; 39 (03) 45-54
  • 167 Jamali AA, Emmerson BC, Chung C, Convery FR, Bugbee WD. Fresh osteochondral allografts: results in the patellofemoral joint. Clin Orthop Relat Res 2005; (437) 176-185
  • 168 Noyes FR, Barber-Westin SD, Rankin M. Meniscal transplantation in symptomatic patients less than fifty years old. J Bone Joint Surg Am 2004; 86 (07) 1392-1404
  • 169 Seil R, Karlsson J, Beaufils P. et al. The difficult balance between scientific evidence and clinical practice: the 2016 ESSKA meniscus consensus on the surgical management of degenerative meniscus lesions. Knee Surg Sports Traumatol Arthrosc 2017; 25 (02) 333-334
  • 170 Rue JP, Yanke AB, Busam ML, McNickle AG, Cole BJ. Prospective evaluation of concurrent meniscus transplantation and articular cartilage repair: minimum 2-year follow-up. Am J Sports Med 2008; 36 (09) 1770-1778
  • 171 Gomoll AH, Kang RW, Chen AL, Cole BJ. Triad of cartilage restoration for unicompartmental arthritis treatment in young patients: meniscus allograft transplantation, cartilage repair and osteotomy. J Knee Surg 2009; 22 (02) 137-141
  • 172 Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am 2009; 91 (07) 1778-1790