Thromb Haemost 2020; 120(10): 1432-1441
DOI: 10.1055/s-0040-1714215
Cellular Haemostasis and Platelets

Conformation-Specific Blockade of αIIbβ3 by a Non-RGD Peptide to Inhibit Platelet Activation without Causing Significant Bleeding and Thrombocytopenia

Chuanbin Shen*
1   Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
2   KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
,
Ming Liu*
3   Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
,
Huiwen Tian*
4   Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
,
Jiameng Li
4   Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
,
Runjia Xu
1   Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
2   KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
,
James Mwangi
1   Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
2   KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
5   Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
,
Qiumin Lu
1   Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
2   KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
,
Xue Hao
1   Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
2   KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
,
Ren Lai
1   Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
2   KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
4   Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
6   Sino-African Joint Research Center, CAS, Kunming Institute of Zoology, Kunming, Yunnan, China
› Author Affiliations
Funding This work was supported by funding from the Chinese Academy of Sciences (XDB31000000, Y802B81201, and XDA12020334), Youth Innovation Promotion Association of the Chinese Academy of Sciences (QYZDJ-SSW-SMC012), the National Science Foundation of China (331372208, 31640071, 31770835, and 31801975), Yunnan Province (2015HA023), and Biological Resources Program, Chinese Academy of Sciences (KFJ-BRP-008).

Abstract

Bleeding and thrombocytopenia to readministration are the most serious side effects of clinical integrin αIIbβ3 antagonists such as RGD-containing peptides. Here we show that a non-RGD peptide ZDPI, identified from skin secretions of Amolops loloensis, inhibited platelet aggregation induced by agonists, such as adenosine diphosphate, collagen, arachidonic acid, PAR1AP, and integrin αIIbβ3 allosteric activator, and reduces soluble fibrinogen binding to activated platelets without perturbing adhesion numbers on immobilized fibrinogen. Further study showed that ZDPI preferred to bind to the active conformation of integrin αIIbβ3, and thus inhibited c-Src-mediated integrin signaling transduction. In contrast to currently used clinical blockers of integrin αIIbβ3, which are all conformation-unspecific blockers, ZDPI conformation specifically binds to activated integrin αIIbβ3, subsequently suppressing platelet spreading. In vivo study revealed that ZDPI inhibited carotid arterial thrombosis with limited bleeding and thrombocytopenia. A non-RGD peptide which targets the active conformation of integrin αIIbβ3, such as ZDPI, might be an excellent candidate or template to develop antithrombotics without significant bleeding and thrombocytopenia side effects.

Authors' Contributions

C.S., M.L., and H.T. performed the experiments, analyzed the data, and created the figures; J.L., R.X., and J.M. performed the experiments; X.H. performed the experiments and analyzed the data; R.L. designed the research, analyzed the data, and wrote the paper.


* These authors contributed equally to this work.


Supplementary Material



Publication History

Received: 26 July 2019

Accepted: 04 June 2020

Article published online:
27 July 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Bennett JS. Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest 2005; 115 (12) 3363-3369
  • 2 Cimmino G, Golino P. Platelet biology and receptor pathways. J Cardiovasc Transl Res 2013; 6 (03) 299-309
  • 3 Ni H, Denis CV, Subbarao S. , et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000; 106 (03) 385-392
  • 4 Yang H, Reheman A, Chen P. , et al. Fibrinogen and von Willebrand factor-independent platelet aggregation in vitro and in vivo. J Thromb Haemost 2006; 4 (10) 2230-2237
  • 5 Xu X, Wu J, Zhai Z. , et al. A novel fibrinogen Bbeta chain frameshift mutation in a patient with severe congenital hypofibrinogenaemia. Thromb Haemost 2006; 95 (06) 931-935
  • 6 Zhai Z, Wu J, Xu X. , et al. Fibrinogen controls human platelet fibronectin internalization and cell-surface retention. J Thromb Haemost 2007; 5 (08) 1740-1746
  • 7 Schwarz M, Meade G, Stoll P. , et al. Conformation-specific blockade of the integrin GPIIb/IIIa: a novel antiplatelet strategy that selectively targets activated platelets. Circ Res 2006; 99 (01) 25-33
  • 8 Bhatt DL, Topol EJ. Scientific and therapeutic advances in antiplatelet therapy. Nat Rev Drug Discov 2003; 2 (01) 15-28
  • 9 Bledzka K, Smyth SS, Plow EF. Integrin αIIbβ3: from discovery to efficacious therapeutic target. Circ Res 2013; 112 (08) 1189-1200
  • 10 Armstrong PC, Peter K. GPIIb/IIIa inhibitors: from bench to bedside and back to bench again. Thromb Haemost 2012; 107 (05) 808-814
  • 11 Reheman A, Xu X, Reddy EC, Ni H. Targeting activated platelets and fibrinolysis: hitting two birds with one stone. Circ Res 2014; 114 (07) 1070-1073
  • 12 Xu X, Lai R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 2015; 115 (04) 1760-1846
  • 13 Lai R, Zheng YT, Shen JH. , et al. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides 2002; 23 (03) 427-435
  • 14 Hao X, Yang H, Wei L. , et al. Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate. Amino Acids 2012; 43 (02) 677-685
  • 15 He X, Yang S, Wei L, Liu R, Lai R, Rong M. Antimicrobial peptide diversity in the skin of the torrent frog, Amolops jingdongensis. Amino Acids 2013; 44 (02) 481-487
  • 16 Yang H, Wang X, Liu X. , et al. Antioxidant peptidomics reveals novel skin antioxidant system. Mol Cell Proteomics 2009; 8 (03) 571-583
  • 17 Liu H, Duan Z, Tang J, Lv Q, Rong M, Lai R. A short peptide from frog skin accelerates diabetic wound healing. FEBS J 2014; 281 (20) 4633-4643
  • 18 Mu L, Tang J, Liu H. , et al. A potential wound-healing-promoting peptide from salamander skin. FASEB J 2014; 28 (09) 3919-3929
  • 19 Tang J, Liu H, Gao C. , et al. A small peptide with potential ability to promote wound healing. PLoS One 2014; 9 (03) e92082
  • 20 Wei L, Yang J, He X. , et al. Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide. J Med Chem 2013; 56 (09) 3546-3556
  • 21 Hao X, Tang X, Luo L, Wang Y, Lai R, Lu Q. A novel ranacyclin-like peptide with anti-platelet activity identified from skin secretions of the frog Amolops loloensis. Gene 2016; 576 (1 Pt 1): 171-175
  • 22 Ma D, Wang Y, Yang H. , et al. Anti-thrombosis repertoire of blood-feeding horsefly salivary glands. Mol Cell Proteomics 2009; 8 (09) 2071-2079
  • 23 Fong KP, Zhu H, Span LM. , et al. Directly activating the integrin αIIbβ3 initiates outside-in signaling by causing αIIbβ3 clustering. J Biol Chem 2016; 291 (22) 11706-11716
  • 24 Li R, Mitra N, Gratkowski H. , et al. Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations. Science 2003; 300 (5620): 795-798
  • 25 Wang Y, Reheman A, Spring CM. , et al. Plasma fibronectin supports hemostasis and regulates thrombosis. J Clin Invest 2014; 124 (10) 4281-4293
  • 26 Reheman A, Yang H, Zhu G. , et al. Plasma fibronectin depletion enhances platelet aggregation and thrombus formation in mice lacking fibrinogen and von Willebrand factor. Blood 2009; 113 (08) 1809-1817
  • 27 Yang H, Lang S, Zhai Z. , et al. Fibrinogen is required for maintenance of platelet intracellular and cell-surface P-selectin expression. Blood 2009; 114 (02) 425-436
  • 28 Ni H, Papalia JM, Degen JL, Wagner DD. Control of thrombus embolization and fibronectin internalization by integrin α IIb β 3 engagement of the fibrinogen γ chain. Blood 2003; 102 (10) 3609-3614
  • 29 Estevez B, Du X. New concepts and mechanisms of platelet activation signaling. Physiology (Bethesda) 2017; 32 (02) 162-177
  • 30 Shen C, Liu M, Xu R. 14-3-3ζ-c-Src-integrin-β3 complex is vital for platelet activation. Blood 2020; 136 (08) 974-988
  • 31 Estevez B, Shen B, Du X. Targeting integrin and integrin signaling in treating thrombosis. Arterioscler Thromb Vasc Biol 2015; 35 (01) 24-29
  • 32 Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 2008; 359 (09) 938-949
  • 33 Xu X, Yang H, Ma D. , et al. Toward an understanding of the molecular mechanism for successful blood feeding by coupling proteomics analysis with pharmacological testing of horsefly salivary glands. Mol Cell Proteomics 2008; 7 (03) 582-590
  • 34 Tang J, Fang Y, Han Y. , et al. YY-39, a tick anti-thrombosis peptide containing RGD domain. Peptides 2015; 68: 99-104
  • 35 Beck F, Geiger J, Gambaryan S. , et al. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition. Blood 2017; 129 (02) e1-e12
  • 36 Yin H, Litvinov RI, Vilaire G. , et al. Activation of platelet alphaIIbbeta3 by an exogenous peptide corresponding to the transmembrane domain of alphaIIb. J Biol Chem 2006; 281 (48) 36732-36741
  • 37 Reheman A, Gross P, Yang H. , et al. Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation. J Thromb Haemost 2005; 3 (05) 875-883
  • 38 Xu XR, Wang Y, Adili R. , et al. Apolipoprotein A-IV binds αIIbβ3 integrin and inhibits thrombosis. Nat Commun 2018; 9 (01) 3608
  • 39 Reheman A, Tasneem S, Ni H, Hayward CP. Mice with deleted multimerin 1 and α-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1. Thromb Res 2010; 125 (05) e177-e183
  • 40 Dunne E, Spring CM, Reheman A. , et al. Cadherin 6 has a functional role in platelet aggregation and thrombus formation. Arterioscler Thromb Vasc Biol 2012; 32 (07) 1724-1731
  • 41 Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 2004; 432 (7013): 59-67
  • 42 Mould AP, Barton SJ, Askari JA. , et al. Conformational changes in the integrin beta A domain provide a mechanism for signal transduction via hybrid domain movement. J Biol Chem 2003; 278 (19) 17028-17035
  • 43 Zhu G, Zhang Q, Reddy EC. , et al. The integrin PSI domain has an endogenous thiol isomerase function and is a novel target for antiplatelet therapy. Blood 2017; 129 (13) 1840-1854
  • 44 Zou Z, Chen H, Schmaier AA, Hynes RO, Kahn ML. Structure-function analysis reveals discrete beta3 integrin inside-out and outside-in signaling pathways in platelets. Blood 2007; 109 (08) 3284-3290
  • 45 Furie B, Furie BC. Thrombus formation in vivo. J Clin Invest 2005; 115 (12) 3355-3362
  • 46 McFadyen JD, Peter K. Novel antithrombotic drugs on the horizon: the ultimate promise to prevent clotting while avoiding bleeding. Circ Res 2017; 121 (10) 1133-1135
  • 47 Webster ML, Sayeh E, Crow M. , et al. Relative efficacy of intravenous immunoglobulin G in ameliorating thrombocytopenia induced by antiplatelet GPIIbIIIa versus GPIbalpha antibodies. Blood 2006; 108 (03) 943-946
  • 48 Ni H, Chen P, Spring CM. , et al. A novel murine model of fetal and neonatal alloimmune thrombocytopenia: response to intravenous IgG therapy. Blood 2006; 107 (07) 2976-2983
  • 49 Curtis BR, Swyers J, Divgi A, McFarland JG, Aster RH. Thrombocytopenia after second exposure to abciximab is caused by antibodies that recognize abciximab-coated platelets. Blood 2002; 99 (06) 2054-2059
  • 50 Diao L, Meibohm B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet 2013; 52 (10) 855-868
  • 51 Yang S, Xiao Y, Kang D. , et al. Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A 2013; 110 (43) 17534-17539
  • 52 Ziegler M, Hohmann JD, Searle AK. , et al. A single-chain antibody-CD39 fusion protein targeting activated platelets protects from cardiac ischaemia/reperfusion injury. Eur Heart J 2018; 39 (02) 111-116
  • 53 Wang X, Palasubramaniam J, Gkanatsas Y. , et al. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res 2014; 114 (07) 1083-1093
  • 54 Hagedorn I, Schmidbauer S, Pleines I. , et al. Factor XIIa inhibitor recombinant human albumin Infestin-4 abolishes occlusive arterial thrombus formation without affecting bleeding. Circulation 2010; 121 (13) 1510-1517