Thromb Haemost 2020; 120(11): 1492-1504
DOI: 10.1055/s-0040-1714352
Review Article

Novel Approaches to Fine-Tune Therapeutic Targeting of Platelets in Atherosclerosis: A Critical Appraisal

Thorsten Kessler
1   Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany
2   Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Munich, Germany
,
Heribert Schunkert
1   Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany
2   Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Munich, Germany
,
2   Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner Site Munich Heart Alliance, Munich, Germany
3   Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum der Universität, Ludwig-Maximilians-Universität, Partner Site Munich Heart Alliance, Munich, Germany
› Institutsangaben
Funding This study was funded by Deutsche Forschungsgemeinschaft (grants: SFB1123 A2; SFB1123 B2).

Abstract

The pathogenesis of atherosclerotic vascular disease is driven by a multitude of risk factors intertwining metabolic and inflammatory pathways. Increasing knowledge about platelet biology sheds light on how platelets take part in these processes from early to later stages of plaque development. Recent insights from experimental studies and mouse models substantiate platelets as initiators and amplifiers in atherogenic leukocyte recruitment. These studies are complemented by results from genetics studies shedding light on novel molecular mechanisms which provide an interesting prospect as novel targets. For instance, experimental studies provide further details how platelet-decorated von Willebrand factor tethered to activated endothelial cells plays a role in atherogenic monocyte recruitment. Novel aspects of platelets as atherogenic inductors of neutrophil extracellular traps and particularities in signaling pathways such as cyclic guanosine monophosphate and the inhibitory adaptor molecule SHB23/LNK associating platelets with atherogenesis are shared. In summary, it was our intention to balance insights from recent experimental data that support a plausible role for platelets in atherogenesis against a paucity of clinical evidence needed to validate this concept in humans.

Supplementary Material



Publikationsverlauf

Eingereicht: 13. Januar 2020

Angenommen: 10. Juni 2020

Artikel online veröffentlicht:
09. August 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. N Engl J Med 2012; 366 (01) 54-63
  • 2 Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol 2016; 27 (05) 473-483
  • 3 Ridker PM, Everett BM, Thuren T. et al; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377 (12) 1119-1131
  • 4 Weber C, von Hundelshausen P. CANTOS trial validates the inflammatory pathogenesis of atherosclerosis: setting the stage for a new chapter in therapeutic targeting. Circ Res 2017; 121 (10) 1119-1121
  • 5 Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis. Immunity 2017; 47 (04) 621-634
  • 6 Mustard JF, Murphy EA, Rowsell HC, Downie HG. Platelets and atherosclerosis. J Atheroscler Res 1964; 4 (01) 1-28
  • 7 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115 (12) 3378-3384
  • 8 Yun KH, Mintz GS, Witzenbichler B. et al. Relationship between platelet reactivity and culprit lesion morphology: an assessment from the ADAPT-DES intravascular ultrasound substudy. JACC Cardiovasc Imaging 2016; 9 (07) 849-854
  • 9 Mangiacapra F, De Bruyne B, Muller O. et al. High residual platelet reactivity after clopidogrel: extent of coronary atherosclerosis and periprocedural myocardial infarction in patients with stable angina undergoing percutaneous coronary intervention. JACC Cardiovasc Interv 2010; 3 (01) 35-40
  • 10 von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100 (01) 27-40
  • 11 Karshovska E, Zhao Z, Blanchet X. et al. Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice. Circ Res 2015; 116 (04) 587-599
  • 12 Schmitt MM, Megens RT, Zernecke A. et al. Endothelial junctional adhesion molecule-a guides monocytes into flow-dependent predilection sites of atherosclerosis. Circulation 2014; 129 (01) 66-76
  • 13 Cavusoglu E, Kornecki E, Sobocka MB. et al. Association of plasma levels of F11 receptor/junctional adhesion molecule-A (F11R/JAM-A) with human atherosclerosis. J Am Coll Cardiol 2007; 50 (18) 1768-1776
  • 14 Karshovska E, Weber C, von Hundelshausen P. Platelet chemokines in health and disease. Thromb Haemost 2013; 110 (05) 894-902
  • 15 Koenen RR, von Hundelshausen P, Nesmelova IV. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 2009; 15 (01) 97-103
  • 16 von Hundelshausen P, Agten SM, Eckardt V. et al. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Sci Transl Med 2017; 9 (384) 6650
  • 17 Massberg S, Brand K, Grüner S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196 (07) 887-896
  • 18 McCarty OJ, Conley RB, Shentu W. et al. Molecular imaging of activated von Willebrand factor to detect high-risk atherosclerotic phenotype. JACC Cardiovasc Imaging 2010; 3 (09) 947-955
  • 19 McGrath RT, van den Biggelaar M, Byrne B. et al. Altered glycosylation of platelet-derived von Willebrand factor confers resistance to ADAMTS13 proteolysis. Blood 2013; 122 (25) 4107-4110
  • 20 Doddapattar P, Dhanesha N, Chorawala MR. et al. Endothelial cell-derived von Willebrand factor, but not platelet-derived, promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2018; 38 (03) 520-528
  • 21 Popa M, Tahir S, Elrod J. et al. Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell-platelet-monocyte interaction. Proc Natl Acad Sci U S A 2018; 115 (24) E5556-E5565
  • 22 van Galen KP, Tuinenburg A, Smeets EM, Schutgens RE. Von Willebrand factor deficiency and atherosclerosis. Blood Rev 2012; 26 (05) 189-196
  • 23 Holm E, Osooli M, Steen Carlsson K, Berntorp E. Cardiovascular disease-related hospitalization and mortality among persons with von Willebrand disease: a nationwide register study in Sweden. Haemophilia 2019; 25 (01) 109-115
  • 24 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 9 (01) 61-67
  • 25 Burger PC, Wagner DD. Platelet P-selectin facilitates atherosclerotic lesion development. Blood 2003; 101 (07) 2661-2666
  • 26 Schmitt C, Abt M, Ciorciaro C. et al. First-in-man study with inclacumab, a human monoclonal antibody against P-selectin. J Cardiovasc Pharmacol 2015; 65 (06) 611-619
  • 27 Ataga KI, Kutlar A, Kanter J. et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med 2017; 376 (05) 429-439
  • 28 Gawaz M. Novel ligands for platelet glycoprotein VI. Thromb Haemost 2018; 118 (03) 435-436
  • 29 Bültmann A, Li Z, Wagner S. et al. Impact of glycoprotein VI and platelet adhesion on atherosclerosis--a possible role of fibronectin. J Mol Cell Cardiol 2010; 49 (03) 532-542
  • 30 Metzger K, Vogel S, Chatterjee M. et al. High-frequency ultrasound-guided disruption of glycoprotein VI-targeted microbubbles targets atheroprogressison in mice. Biomaterials 2015; 36: 80-89
  • 31 Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129 (01) 12-23
  • 32 Jamasbi J, Megens RT, Bianchini M. et al. Differential inhibition of human atherosclerotic plaque-induced platelet activation by dimeric GPVI-Fc and anti-GPVI antibodies: functional and imaging studies. J Am Coll Cardiol 2015; 65 (22) 2404-2415
  • 33 Schulz C, Penz S, Hoffmann C. et al. Platelet GPVI binds to collagenous structures in the core region of human atheromatous plaque and is critical for atheroprogression in vivo. Basic Res Cardiol 2008; 103 (04) 356-367
  • 34 Ungerer M, Rosport K, Bültmann A. et al. Novel antiplatelet drug revacept (dimeric glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation 2011; 123 (17) 1891-1899
  • 35 Schüpke S, Hein-Rothweiler R, Mayer K. et al; ISAR-PLASTER-Trial Investigators. Revacept, a novel inhibitor of platelet adhesion, in patients undergoing elective PCI-design and rationale of the randomized ISAR-PLASTER trial. Thromb Haemost 2019; 119 (09) 1539-1545
  • 36 Goldmann L, Duan R, Kragh T. et al. Oral Bruton tyrosine kinase inhibitors block activation of the platelet Fc receptor CD32a (FcγRIIA): a new option in HIT?. Blood Adv 2019; 3 (23) 4021-4033
  • 37 Busygina K, Jamasbi J, Seiler T. et al. Oral Bruton tyrosine kinase inhibitors selectively block atherosclerotic plaque-triggered thrombus formation in humans. Blood 2018; 131 (24) 2605-2616
  • 38 Busygina K, Denzinger V, Bernlochner I, Weber C, Lorenz R, Siess W. Btk inhibitors as first oral atherothrombosis-selective antiplatelet drugs?. Thromb Haemost 2019; 119 (08) 1212-1221
  • 39 Soehnlein O. Decision shaping neutrophil-platelet interplay in inflammation: from physiology to intervention. Eur J Clin Invest 2018; 48 (02) e12871
  • 40 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 41 Wang Y, Li M, Stadler S. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009; 184 (02) 205-213
  • 42 Megens RT, Vijayan S, Lievens D. et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 2012; 107 (03) 597-598
  • 43 Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015; 349 (6245): 316-320
  • 44 Knight JS, Luo W, O'Dell AA. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 2014; 114 (06) 947-956
  • 45 Döring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res 2017; 120 (04) 736-743
  • 46 Silvestre-Roig C, Braster Q, Wichapong K. et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 2019; 569 (7755): 236-240
  • 47 Clark SR, Ma AC, Tavener SA. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 48 Caudrillier A, Kessenbrock K, Gilliss BM. et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 2012; 122 (07) 2661-2671
  • 49 Maugeri N, Capobianco A, Rovere-Querini P. et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Sci Transl Med 2018; 10 (451) 10
  • 50 Maugeri N, Campana L, Gavina M. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12 (12) 2074-2088
  • 51 Rossaint J, Herter JM, Van Aken H. et al. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 2014; 123 (16) 2573-2584
  • 52 Grommes J, Alard JE, Drechsler M. et al. Disruption of platelet-derived chemokine heteromers prevents neutrophil extravasation in acute lung injury. Am J Respir Crit Care Med 2012; 185 (06) 628-636
  • 53 Elaskalani O, Abdol Razak NB, Metharom P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell Commun Signal 2018; 16 (01) 24
  • 54 Ramirez GA, Manfredi AA, Maugeri N. Misunderstandings between platelets and neutrophils build in chronic inflammation. Front Immunol 2019; 10: 2491
  • 55 Fahy E, Cotter D, Sud M, Subramaniam S. Lipid classification, structures and tools. Biochim Biophys Acta 2011; 1811 (11) 637-647
  • 56 Slatter DA, Aldrovandi M, O'Connor A. et al. Mapping the human platelet lipidome reveals cytosolic phospholipase A2 as a regulator of mitochondrial bioenergetics during activation. Cell Metab 2016; 23 (05) 930-944
  • 57 O'Donnell VB, Murphy RC, Watson SP. Platelet lipidomics: modern day perspective on lipid discovery and characterization in platelets. Circ Res 2014; 114 (07) 1185-1203
  • 58 McFadyen JD, Peter K. Platelet lipidomics and function: joining the dots. Blood 2018; 132 (05) 465-466
  • 59 Chatterjee M. Platelet lipidome: dismantling the “Trojan horse” in the bloodstream. J Thromb Haemost 2020; 18 (03) 543-557
  • 60 Mason RP, Libby P, Bhatt DL. Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid. Arterioscler Thromb Vasc Biol 2020; 40 (05) 1135-1147
  • 61 Bhatt DL, Steg PG, Miller M. et al; REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 2019; 380 (01) 11-22
  • 62 Yokoyama M, Origasa H, Matsuzaki M. et al; Japan EPA lipid intervention study (JELIS) Investigators. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 2007; 369 (9567): 1090-1098
  • 63 Sato M, Katsuki Y, Fukuhara K. et al. Effects of highly purified ethyl all-cis-5,8,11,14,17-icosapentaenoate (EPA-E) on rabbit platelets. Biol Pharm Bull 1993; 16 (04) 362-367
  • 64 Kobayashi T, Tahara Y, Matsumoto M. et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J Clin Invest 2004; 114 (06) 784-794
  • 65 Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011; 31 (05) 986-1000
  • 66 Egan KM, Lawson JA, Fries S. et al. COX-2-derived prostacyclin confers atheroprotection on female mice. Science 2004; 306 (5703): 1954-1957
  • 67 Feldman M, Jialal I, Devaraj S, Cryer B. Effects of low-dose aspirin on serum C-reactive protein and thromboxane B2 concentrations: a placebo-controlled study using a highly sensitive C-reactive protein assay. J Am Coll Cardiol 2001; 37 (08) 2036-2041
  • 68 McNeil JJ, Wolfe R, Woods RL. et al; ASPREE Investigator Group. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N Engl J Med 2018; 379 (16) 1509-1518
  • 69 Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature 2014; 510 (7503): 58-67
  • 70 Yu Z, Peng Q, Huang Y. Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin Sci (Lond) 2019; 133 (06) 763-776
  • 71 Smyth SS, Mueller P, Yang F, Brandon JA, Morris AJ. Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34 (03) 479-486
  • 72 Edsfeldt A, Dunér P, Ståhlman M. et al. Sphingolipids contribute to human atherosclerotic plaque inflammation. Arterioscler Thromb Vasc Biol 2016; 36 (06) 1132-1140
  • 73 Jonnalagadda D, Sunkara M, Morris AJ, Whiteheart SW. Granule-mediated release of sphingosine-1-phosphate by activated platelets. Biochim Biophys Acta 2014; 1841 (11) 1581-1589
  • 74 Yatomi Y, Ruan F, Hakomori S, Igarashi Y. Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood 1995; 86 (01) 193-202
  • 75 Zhang L, Orban M, Lorenz M. et al. A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J Exp Med 2012; 209 (12) 2165-2181
  • 76 English D, Welch Z, Kovala AT. et al. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J 2000; 14 (14) 2255-2265
  • 77 Bodin S, Tronchère H, Payrastre B. Lipid rafts are critical membrane domains in blood platelet activation processes. Biochim Biophys Acta 2003; 1610 (02) 247-257
  • 78 Yang H, Kim A, David T. et al. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 2012; 151 (01) 111-122
  • 79 Chatterjee M, Rath D, Schlotterbeck J. et al. Regulation of oxidized platelet lipidome: implications for coronary artery disease. Eur Heart J 2017; 38 (25) 1993-2005
  • 80 Diehl P, Nienaber F, Zaldivia MTK. et al. Lysophosphatidylcholine is a major component of platelet microvesicles promoting platelet activation and reporting atherosclerotic plaque instability. Thromb Haemost 2019; 119 (08) 1295-1310
  • 81 Vajen T, Mause SF, Koenen RR. Microvesicles from platelets: novel drivers of vascular inflammation. Thromb Haemost 2015; 114 (02) 228-236
  • 82 Bolen AL, Naren AP, Yarlagadda S. et al. The phospholipase A1 activity of lysophospholipase A-I links platelet activation to LPA production during blood coagulation. J Lipid Res 2011; 52 (05) 958-970
  • 83 Siess W, Zangl KJ, Essler M. et al. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci U S A 1999; 96 (12) 6931-6936
  • 84 Fessler MB, Rose K, Zhang Y, Jaramillo R, Zeldin DC. Relationship between serum cholesterol and indices of erythrocytes and platelets in the US population. J Lipid Res 2013; 54 (11) 3177-3188
  • 85 Barrett TJ, Schlegel M, Zhou F. et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Sci Transl Med 2019; 11 (517) 481
  • 86 Wang N, Tall AR. Cholesterol in platelet biogenesis and activation. Blood 2016; 127 (16) 1949-1953
  • 87 Ahmadsei M, Lievens D, Weber C, von Hundelshausen P, Gerdes N. Immune-mediated and lipid-mediated platelet function in atherosclerosis. Curr Opin Lipidol 2015; 26 (05) 438-448
  • 88 Glynn RJ, Danielson E, Fonseca FA. et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N Engl J Med 2009; 360 (18) 1851-1861
  • 89 Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res 2017; 120 (01) 229-243
  • 90 Aslan JE, McCarty OJ. Rho GTPases in platelet function. J Thromb Haemost 2013; 11 (01) 35-46
  • 91 Podrez EA, Byzova TV, Febbraio M. et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 2007; 13 (09) 1086-1095
  • 92 Badrnya S, Schrottmaier WC, Kral JB. et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol 2014; 34 (03) 571-580
  • 93 Barale C, Bonomo K, Frascaroli C. et al. Platelet function and activation markers in primary hypercholesterolemia treated with anti-PCSK9 monoclonal antibody: A 12-month follow-up. Nutr Metab Cardiovasc Dis 2020; 30 (02) 282-291
  • 94 Navarese EP, Kolodziejczak M, Winter MP. et al. Association of PCSK9 with platelet reactivity in patients with acute coronary syndrome treated with prasugrel or ticagrelor: The PCSK9-REACT study. Int J Cardiol 2017; 227: 644-649
  • 95 Chu SG, Becker RC, Berger PB. et al. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost 2010; 8 (01) 148-156
  • 96 Boos CJ, Lip GY. Assessment of mean platelet volume in coronary artery disease - what does it mean?. Thromb Res 2007; 120 (01) 11-13
  • 97 Lancé MD, Sloep M, Henskens YM, Marcus MA. Mean platelet volume as a diagnostic marker for cardiovascular disease: drawbacks of preanalytical conditions and measuring techniques. Clin Appl Thromb Hemost 2012; 18 (06) 561-568
  • 98 Soranzo N, Spector TD, Mangino M. et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 2009; 41 (11) 1182-1190
  • 99 Mega JL, Stitziel NO, Smith JG. et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet 2015; 385 (9984): 2264-2271
  • 100 Iotchkova V, Huang J, Morris JA. et al; UK10K Consortium. Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps. Nat Genet 2016; 48 (11) 1303-1312
  • 101 Astle WJ, Elding H, Jiang T. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 2016; 167 (05) 1415-1429.e19
  • 102 Kamatani Y, Matsuda K, Okada Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 2010; 42 (03) 210-215
  • 103 Gieger C, Radhakrishnan A, Cvejic A. et al. New gene functions in megakaryopoiesis and platelet formation. Nature 2011; 480 (7376): 201-208
  • 104 Qayyum R, Snively BM, Ziv E. et al. A meta-analysis and genome-wide association study of platelet count and mean platelet volume in African Americans. PLoS Genet 2012; 8 (03) e1002491
  • 105 Li J, Glessner JT, Zhang H. et al. GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children. Hum Mol Genet 2013; 22 (07) 1457-1464
  • 106 Shameer K, Denny JC, Ding K. et al. A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet 2014; 133 (01) 95-109
  • 107 Schick UM, Jain D, Hodonsky CJ. et al. Genome-wide association study of platelet count identifies ancestry-specific loci in Hispanic/Latino Americans. Am J Hum Genet 2016; 98 (02) 229-242
  • 108 Kanai M, Akiyama M, Takahashi A. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat Genet 2018; 50 (03) 390-400
  • 109 Shuldiner AR, O'Connell JR, Bliden KP. et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 2009; 302 (08) 849-857
  • 110 Mega JL, Close SL, Wiviott SD. et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 2009; 360 (04) 354-362
  • 111 Johnson AD, Yanek LR, Chen MH. et al. Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat Genet 2010; 42 (07) 608-613
  • 112 Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 2018; 114 (09) 1241-1257
  • 113 Barrett JC, Clayton DG, Concannon P. et al; Type 1 Diabetes Genetics Consortium. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009; 41 (06) 703-707
  • 114 Ehret GB, Munroe PB, Rice KM. et al; International Consortium for Blood Pressure Genome-Wide Association Studies, CARDIoGRAM consortium, CKDGen Consortium, KidneyGen Consortium, EchoGen consortium, CHARGE-HF consortium. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011; 478 (7367): 103-109
  • 115 Wain LV, Verwoert GC, O'Reilly PF. et al; LifeLines Cohort Study, EchoGen consortium, AortaGen Consortium, CHARGE Consortium Heart Failure Working Group, KidneyGen consortium, CKDGen consortium, Cardiogenics consortium, CardioGram. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 2011; 43 (10) 1005-1011
  • 116 Hunt KA, Zhernakova A, Turner G. et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet 2008; 40 (04) 395-402
  • 117 Tong W, Lodish HF. Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med 2004; 200 (05) 569-580
  • 118 Bersenev A, Wu C, Balcerek J, Tong W. Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. J Clin Invest 2008; 118 (08) 2832-2844
  • 119 Takizawa H, Nishimura S, Takayama N. et al. Lnk regulates integrin alphaIIbbeta3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. J Clin Invest 2010; 120 (01) 179-190
  • 120 Christiansen MK, Larsen SB, Nyegaard M. et al. The SH2B3 and KCNK5 loci may be implicated in regulation of platelet count, volume, and maturity. Thromb Res 2017; 158: 86-92
  • 121 Wang W, Tang Y, Wang Y. et al. LNK/SH2B3 loss of function promotes atherosclerosis and thrombosis. Circ Res 2016; 119 (06) e91-e103
  • 122 Wobst J, Schunkert H, Kessler T. Genetic alterations in the NO-cGMP pathway and cardiovascular risk. Nitric Oxide 2018; 76: 105-112
  • 123 Nikpay M, Goel A, Won HH. et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015; 47 (10) 1121-1130
  • 124 Deloukas P, Kanoni S, Willenborg C. et al; CARDIoGRAMplusC4D Consortium, DIAGRAM Consortium, CARDIOGENICS Consortium, MuTHER Consortium, Wellcome Trust Case Control Consortium. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013; 45 (01) 25-33
  • 125 Webb TR, Erdmann J, Stirrups KE. et al; Wellcome Trust Case Control Consortium, MORGAM Investigators, Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol 2017; 69 (07) 823-836
  • 126 Klarin D, Zhu QM, Emdin CA. et al; CARDIoGRAMplusC4D Consortium. Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease. Nat Genet 2017; 49 (09) 1392-1397
  • 127 Schunkert H, König IR, Kathiresan S. et al; Cardiogenics, CARDIoGRAM Consortium. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011; 43 (04) 333-338
  • 128 Kathiresan S, Voight BF, Purcell S. et al; Myocardial Infarction Genetics Consortium, Wellcome Trust Case Control Consortium. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 2009; 41 (03) 334-341
  • 129 Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 1987; 84 (24) 9265-9269
  • 130 Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ. Evidence for the inhibitory role of guanosine 3′, 5′-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 1981; 57 (05) 946-955
  • 131 Moro MA, Russel RJ, Cellek S. et al. cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci U S A 1996; 93 (04) 1480-1485
  • 132 Bekendam RH, Iyu D, Passam F. et al. Protein disulfide isomerase regulation by nitric oxide maintains vascular quiescence and controls thrombus formation. J Thromb Haemost 2018; 16 (11) 2322-2335
  • 133 Lukowski R, Weinmeister P, Bernhard D. et al. Role of smooth muscle cGMP/cGKI signaling in murine vascular restenosis. Arterioscler Thromb Vasc Biol 2008; 28 (07) 1244-1250
  • 134 Melichar VO, Behr-Roussel D, Zabel U. et al. Reduced cGMP signaling associated with neointimal proliferation and vascular dysfunction in late-stage atherosclerosis. Proc Natl Acad Sci U S A 2004; 101 (47) 16671-16676
  • 135 Ahluwalia A, Foster P, Scotland RS. et al. Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc Natl Acad Sci U S A 2004; 101 (05) 1386-1391
  • 136 Salvi E, Kutalik Z, Glorioso N. et al. Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase. Hypertension 2012; 59 (02) 248-255
  • 137 Emdin CA, Khera AV, Klarin D. et al. Phenotypic consequences of a genetic predisposition to enhanced nitric oxide signaling. Circulation 2018; 137 (03) 222-232
  • 138 Kessler T, Wobst J, Wolf B. et al. Functional characterization of the GUCY1A3 coronary artery disease risk locus. Circulation 2017; 136 (05) 476-489
  • 139 Nelson CP, Goel A, Butterworth AS. et al; EPIC-CVD Consortium, CARDIoGRAMplusC4D, UK Biobank CardioMetabolic Consortium CHD working group. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet 2017; 49 (09) 1385-1391
  • 140 Franzén O, Ermel R, Cohain A. et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science 2016; 353 (6301): 827-830
  • 141 Salvi E, Kuznetsova T, Thijs L. et al. Target sequencing, cell experiments, and a population study establish endothelial nitric oxide synthase (eNOS) gene as hypertension susceptibility gene. Hypertension 2013; 62 (05) 844-852
  • 142 Erdmann J, Stark K, Esslinger UB. et al; CARDIoGRAM. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 2013; 504 (7480): 432-436
  • 143 Zeng L, Talukdar HA, Koplev S. et al. Contribution of gene regulatory networks to heritability of coronary artery disease. J Am Coll Cardiol 2019; 73 (23) 2946-2957
  • 144 Nurden AT. Should studies on Glanzmann thrombasthenia not be telling us more about cardiovascular disease and other major illnesses?. Blood Rev 2017; 31 (05) 287-299
  • 145 Girolami A, Vettore S, Vianello F, Berti de Marinis G, Fabris F. Myocardial infarction in two cousins heterozygous for ASN41HIS autosomal dominant variant of Bernard-Soulier syndrome. J Thromb Thrombolysis 2012; 34 (04) 513-517
  • 146 Collaboration AT. Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002; 324 (7329): 71-86
  • 147 Patrono C, García Rodríguez LA, Landolfi R, Baigent C. Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med 2005; 353 (22) 2373-2383
  • 148 Davì G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007; 357 (24) 2482-2494
  • 149 Praticò D, Tillmann C, Zhang ZB, Li H, FitzGerald GA. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc Natl Acad Sci U S A 2001; 98 (06) 3358-3363
  • 150 Belton OA, Duffy A, Toomey S, Fitzgerald DJ. Cyclooxygenase isoforms and platelet vessel wall interactions in the apolipoprotein E knockout mouse model of atherosclerosis. Circulation 2003; 108 (24) 3017-3023
  • 151 Egan KM, Wang M, Fries S. et al. Cyclooxygenases, thromboxane, and atherosclerosis: plaque destabilization by cyclooxygenase-2 inhibition combined with thromboxane receptor antagonism. Circulation 2005; 111 (03) 334-342
  • 152 Ranke C, Hecker H, Creutzig A, Alexander K. Dose-dependent effect of aspirin on carotid atherosclerosis. Circulation 1993; 87 (06) 1873-1879
  • 153 Ridker PM, Cook NR, Lee IM. et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med 2005; 352 (13) 1293-1304
  • 154 Baigent C, Blackwell L, Collins R. et al; Antithrombotic Trialists' (ATT) Collaboration. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009; 373 (9678): 1849-1860
  • 155 Bowman L, Mafham M, Wallendszus K. et al; ASCEND Study Collaborative Group. Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med 2018; 379 (16) 1529-1539
  • 156 Gaziano JM, Brotons C, Coppolecchia R. et al; ARRIVE Executive Committee. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial. Lancet 2018; 392 (10152): 1036-1046
  • 157 Khera AV, Kathiresan S. Is coronary atherosclerosis one disease or many? Setting realistic expectations for precision medicine. Circulation 2017; 135 (11) 1005-1007
  • 158 Hall KT, Kessler T, Buring JE. et al. Genetic variation at the coronary artery disease risk locus GUCY1A3 modifies cardiovascular disease prevention effects of aspirin. Eur Heart J 2019; 40 (41) 3385-3392
  • 159 Patrono C. The multifaceted clinical readouts of platelet inhibition by low-dose aspirin. J Am Coll Cardiol 2015; 66 (01) 74-85
  • 160 Kessler T, Wolf B, Eriksson N. et al. Association of the coronary artery disease risk gene GUCY1A3 with ischaemic events after coronary intervention. Cardiovasc Res 2019; 115 (10) 1512-1518
  • 161 Seaman CD, George KM, Ragni M, Folsom AR. Association of von Willebrand factor deficiency with prevalent cardiovascular disease and asymptomatic carotid atherosclerosis: The Atherosclerosis Risk in Communities Study. Thromb Res 2016; 144: 236-238
  • 162 Eikelboom JW, Mehta SR, Anand SS, Xie C, Fox KA, Yusuf S. Adverse impact of bleeding on prognosis in patients with acute coronary syndromes. Circulation 2006; 114 (08) 774-782
  • 163 Westenbrink BD, Alings M, Connolly SJ. et al. Anemia predicts thromboembolic events, bleeding complications and mortality in patients with atrial fibrillation: insights from the RE-LY trial. J Thromb Haemost 2015; 13 (05) 699-707
  • 164 Simon T, Verstuyft C, Mary-Krause M. et al; French Registry of Acute ST-Elevation and Non-ST-Elevation Myocardial Infarction (FAST-MI) Investigators. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med 2009; 360 (04) 363-375
  • 165 Hulot JS, Bura A, Villard E. et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 2006; 108 (07) 2244-2247
  • 166 Signorello MG, Segantin A, Leoncini G. The arachidonic acid effect on platelet nitric oxide level. Biochim Biophys Acta 2009; 1791 (11) 1084-1092