J Neurol Surg A Cent Eur Neurosurg 2021; 82(02): 138-146
DOI: 10.1055/s-0040-1716516
Original Article

Early Serum Biomarkers for Intensive Care Unit Treatment within the First 24 Hours in Patients with Intracerebral Hemorrhage

Michael Bender
1   Department of Neurosurgery, Universitätsklinikum Giessen und Marburg Standort Giessen, Giessen, Germany
,
Tim Naumann
1   Department of Neurosurgery, Universitätsklinikum Giessen und Marburg Standort Giessen, Giessen, Germany
,
Eberhard Uhl
1   Department of Neurosurgery, Universitätsklinikum Giessen und Marburg Standort Giessen, Giessen, Germany
,
Marco Stein
1   Department of Neurosurgery, Universitätsklinikum Giessen und Marburg Standort Giessen, Giessen, Germany
› Institutsangaben

Abstract

Background The prognostic significance of serum biomarkers in patients with intracerebral hemorrhage (ICH) is not well investigated concerning inhospital mortality (IHM) and cardiopulmonary events within the first 24 hours of intensive care unit (ICU) treatment. The influence of troponin I (TNI) value and cortisol value (CV) on cardiopulmonary events within the first 24 hours of ICU treatment was reported in subarachnoid hemorrhage patients, but not in ICH patients up to now. The aim of this study was to investigate the role of early serum biomarkers on IHM and TNI value and CV on cardiopulmonary events within the first 24 hours of ICU treatment.

Patients and Methods A total of 329 patients with spontaneous ICH were retrospectively analyzed. Blood samples were taken on admission to measure serum biomarkers. The TNI value and CV were defined as biomarkers for cardiopulmonary stress. Demographic data, cardiopulmonary parameters, including norepinephrine application rate (NAR) in microgram per kilogram per minute and inspiratory oxygen fraction (FiO2) within the first 24 hours, and treatment regime were analyzed concerning their impact on ICU treatment and in hospital outcome. Binary logistic analysis was used to identify independent prognostic factors for IHM.

Results Patients with initially nonelevated CVs required higher NAR (p = 0.01) and FiO2 (p = 0.046) within the first 24 hours of ICU treatment. Lower cholinesterase level (p = 0.004), higher NAR (p = 0.002), advanced age (p < 0.0001), larger ICH volume (p < 0.0001), presence of intraventricular hemorrhage (p = 0.007) and hydrocephalus (p = 0.009), raised level of C-reactive protein (p = 0.024), serum lactate (p = 0.003), and blood glucose (p = 0.05) on admission were significantly associated with IHM. In a multivariate model, age (odds ratio [OR]: 1.055; 95% confidence interval [CI]: 1.026–1.085; p < 0.0001), ICH volume (OR: 1.016; CI: 1.008–1.025; p < 0.0001), and Glasgow Coma Scale (GCS) score (OR: 0.680; CI: 0.605–0.764; p < 0.0001) on admission as well as requiring NAR (OR: 1.171; CI: 1.026–1.337; p = 0.02) and FiO2 (OR: 0.951; CI: 0.921–0.983, p = 0.003) within the first 24 hours were independent predictors of IHM.

Conclusion Higher levels of C-reactive protein, serum lactate, blood glucose, and lower cholinesterase level on admission were significantly associated with IHM. Patients with initially nonelevated CVs required higher NAR and FiO2 within the first 24 hours of ICU treatment. Furthermore, requiring an NAR > 0.5 µg/kg/min or an FiO2 > 0.21 were identified as additional independent predictors for IHM. These results could be helpful to improve ICU treatment in ICH patients.



Publikationsverlauf

Eingereicht: 03. September 2019

Angenommen: 14. April 2020

Artikel online veröffentlicht:
08. Dezember 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hjalmarsson C, Bergfeldt L, Bokemark L, Manhem K, Andersson B. Electrocardiographic abnormalities and elevated cTNT at admission for intracerebral hemorrhage: predictors for survival?. Ann Noninvasive Electrocardiol 2013; 18 (05) 441-449
  • 2 Garrett MC, Komotar RJ, Starke RM, Doshi D, Otten ML, Connolly ES. Elevated troponin levels are predictive of mortality in surgical intracerebral hemorrhage patients. Neurocrit Care 2010; 12 (02) 199-203
  • 3 Caplan LR. Intracerebral haemorrhage. Lancet 1992; 339 (8794): 656-658
  • 4 Ahn CS, Lee SK, Kim HS, Kong MH, Song KY, Kang DS. Surgical outcome of spontaneous intracerebral hemorrhage in less than stuporous mental status. J Korean Neurosurg Soc 2004; 35: 290-296
  • 5 Martí-Fàbregas J, Belvís R, Guardia E. et al. Prognostic value of pulsatility index in acute intracerebral hemorrhage. Neurology 2003; 61 (08) 1051-1056
  • 6 Hays A, Diringer MN. Elevated troponin levels are associated with higher mortality following intracerebral hemorrhage. Neurology 2006; 66 (09) 1330-1334
  • 7 Foerch C, Curdt I, Yan B. et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry 2006; 77 (02) 181-184
  • 8 Tuhrim S, Horowitz DR, Sacher M, Godbold JH. Volume of ventricular blood is an important determinant of outcome in supratentorial intracerebral hemorrhage. Crit Care Med 1999; 27 (03) 617-621
  • 9 Gerner ST, Auerbeck K, Sprügel MI. et al. Peak troponin i levels are associated with functional outcome in intracerebral hemorrhage. Cerebrovasc Dis 2018; 46 (1–2): 72-81
  • 10 Davis SM, Broderick J, Hennerici M. et al; Recombinant Activated Factor VII Intracerebral Hemorrhage Trial Investigators. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 2006; 66 (08) 1175-1181
  • 11 Juvela S. Risk factors for impaired outcome after spontaneous intracerebral hemorrhage. Arch Neurol 1995; 52 (12) 1193-1200
  • 12 Chung PW, Won YS, Kwon YJ, Choi CS, Kim BM. Initial troponin level as a predictor of prognosis in patients with intracerebral hemorrhage. J Korean Neurosurg Soc 2009; 45 (06) 355-359
  • 13 Bhoi S, Verma P, Vankar S, Galwankar S. High sensitivity troponins and conventional troponins at the bedside. Int J Crit Illn Inj Sci 2014; 4 (03) 253-256
  • 14 Nastasovic T, Milakovic B, Marinkovic JE, Grujicic D, Stosic M. Could cardiac biomarkers predict neurogenic pulmonary edema in aneurysmal subarachnoid hemorrhage?. Acta Neurochir (Wien) 2017; 159 (04) 705-712
  • 15 Jeon IC, Chang CH, Choi BY, Kim MS, Kim SW, Kim SH. Cardiac troponin I elevation in patients with aneurysmal subarachnoid hemorrhage. J Korean Neurosurg Soc 2009; 46 (02) 99-102
  • 16 Kono T, Morita H, Kuroiwa T, Onaka H, Takatsuka H, Fujiwara A. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium. J Am Coll Cardiol 1994; 24 (03) 636-640
  • 17 Lee VH, Connolly HM, Fulgham JR, Manno EM, Brown Jr RD, Wijdicks EFM. Tako-tsubo cardiomyopathy in aneurysmal subarachnoid hemorrhage: an underappreciated ventricular dysfunction. J Neurosurg 2006; 105 (02) 264-270
  • 18 Ramappa P, Thatai D, Coplin W. et al. Cardiac troponin-I: a predictor of prognosis in subarachnoid hemorrhage. Neurocrit Care 2008; 8 (03) 398-403
  • 19 Connor RC. Myocardial damage secondary to brain lesions. Am Heart J 1969; 78 (02) 145-148
  • 20 Doshi R, Neil-Dwyer G. Hypothalamic and myocardial lesions after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 1977; 40 (08) 821-826
  • 21 Samuels MA. Neurogenic heart disease: a unifying hypothesis. Am J Cardiol 1987; 60 (18) 15J-19J
  • 22 Todd GL, Baroldi G, Pieper GM, Clayton FC, Eliot RS. Experimental catecholamine-induced myocardial necrosis. I. Morphology, quantification and regional distribution of acute contraction band lesions. J Mol Cell Cardiol 1985; 17 (04) 317-338
  • 23 Maramattom BV, Manno EM, Fulgham JR, Jaffe AS, Wijdicks EF. Clinical importance of cardiac troponin release and cardiac abnormalities in patients with supratentorial cerebral hemorrhages. Mayo Clin Proc 2006; 81 (02) 192-196
  • 24 Agnihotri S, Czap A, Staff I, Fortunato G, McCullough LD. Peripheral leukocyte counts and outcomes after intracerebral hemorrhage. J Neuroinflammation 2011; 8: 160
  • 25 Di Napoli M, Godoy DA, Campi V. et al. C-reactive protein level measurement improves mortality prediction when added to the spontaneous intracerebral hemorrhage score. Stroke 2011; 42 (05) 1230-1236
  • 26 Diedler J, Sykora M, Hahn P. et al. C-reactive-protein levels associated with infection predict short- and long-term outcome after supratentorial intracerebral hemorrhage. Cerebrovasc Dis 2009; 27 (03) 272-279
  • 27 Yang X, Ren W, Zu H, Dong Q. Evaluate the serum cortisol in patients with intracerebral hemorrhage. Clin Neurol Neurosurg 2014; 123: 127-130
  • 28 Zheng J, Yu Z, Ma L. et al. association between blood glucose and functional outcome in intracerebral hemorrhage: a systematic review and meta-analysis. World Neurosurg 2018; 114: e756-e765
  • 29 Graeb DA, Robertson WD, Lapointe JS, Nugent RA, Harrison PB. Computed tomographic diagnosis of intraventricular hemorrhage. Etiology and prognosis. Radiology 1982; 143 (01) 91-96
  • 30 Evans Jr WA. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatry 1942; 47 (06) 931-937
  • 31 van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988; 19 (05) 604-607
  • 32 Stein M, Luecke M, Preuss M, Boeker DK, Joedicke A, Oertel MF. Spontaneous intracerebral hemorrhage with ventricular extension and the grading of obstructive hydrocephalus: the prediction of outcome of a special life-threatening entity. Neurosurgery 2010; 67 (05) 1243-1251 , discussion 1252
  • 33 Feibel JH, Hardy PM, Campbell RG, Goldstein MN, Joynt RJ. Prognostic value of the stress response following stroke. JAMA 1977; 238 (13) 1374-1376
  • 34 Annane D. The role of ACTH and corticosteroids for sepsis and septic shock: an update. Front Endocrinol (Lausanne) 2016; 7: 70
  • 35 Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995; 332 (20) 1351-1362
  • 36 Sam S, Corbridge TC, Mokhlesi B, Comellas AP, Molitch ME. Cortisol levels and mortality in severe sepsis. Clin Endocrinol (Oxf) 2004; 60 (01) 29-35
  • 37 Nyberg C, Karlsson T, Hillered L, Stridsberg M, Ronne Engström E. The early endocrine stress response in experimental subarachnoid hemorrhage. PLoS One 2016; 11 (03) e0151457
  • 38 Zetterling M, Engström BE, Hallberg L. et al. Cortisol and adrenocorticotropic hormone dynamics in the acute phase of subarachnoid haemorrhage. Br J Neurosurg 2011; 25 (06) 684-692
  • 39 Hachinski VC, Smith KE, Silver MD, Gibson CJ, Ciriello J. Acute myocardial and plasma catecholamine changes in experimental stroke. Stroke 1986; 17 (03) 387-390
  • 40 Peeters B, Meersseman P, Vander Perre S. et al. ACTH and cortisol responses to CRH in acute, subacute, and prolonged critical illness: a randomized, double-blind, placebo-controlled, crossover cohort study. Intensive Care Med 2018; 44 (12) 2048-2058
  • 41 Samuels MA. The brain-heart connection. Circulation 2007; 116 (01) 77-84
  • 42 Huttner HB, Kiphuth IC, Teuber L. et al. Neuroendocrine changes in patients with spontaneous supratentorial intracerebral hemorrhage. Neurocrit Care 2013; 18 (01) 39-44
  • 43 Vuong C, Van Uum SH, O'Dell LE, Lutfy K, Friedman TC. The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr Rev 2010; 31 (01) 98-132
  • 44 Kim Y, Han MH, Kim CH, Kim JM, Cheong JH, Ryu JI. Increased short-term mortality in patients with spontaneous intracerebral hemorrhage and its association with admission glucose levels and leukocytosis. World Neurosurg 2017; 98: 503-511
  • 45 Yu S, Arima H, Heeley E. et al; INTERACT2 Investigators. White blood cell count and clinical outcomes after intracerebral hemorrhage: the INTERACT2 trial. J Neurol Sci 2016; 361: 112-116
  • 46 Lorente L, Martín MM, Abreu-González P. et al. The serum melatonin levels and mortality of patients with spontaneous intracerebral hemorrhage. Brain Sci 2019; 9 (10) E263
  • 47 Chen W, Wang X, Liu F. et al. The predictive role of postoperative neutrophil to lymphocyte ratio for 30-day mortality after intracerebral hematoma evacuation. World Neurosurg 2020; 134: e631-e635
  • 48 Bernstein JE, Savla P, Dong F. et al. Inflammatory markers and severity of intracerebral hemorrhage. Cureus 2018; 10 (10) e3529
  • 49 Hu HT, Xiao F, Yan YQ, Wen SQ, Zhang L. The prognostic value of serum tau in patients with intracerebral hemorrhage. Clin Biochem 2012; 45 (16–17): 1320-1324
  • 50 Qian SQ, He SR, Li BB, Qian J, Zheng XD. Serum S100A12 and 30-day mortality after acute intracerebral hemorrhage. Clin Chim Acta 2018; 477: 1-6