Semin Respir Crit Care Med 2021; 42(01): 040-046
DOI: 10.1055/s-0040-1718387
Review Article

Noninvasive Monitoring in the Intensive Care Unit

Daniel De Backer
1   Department of Intensive Care, CHIREC Hospital, Université Libre de Bruxelles, Brussels, Belgium
,
Jean-Louis Vincent
2   Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
› Author Affiliations

Abstract

There has been considerable development in the field of noninvasive hemodynamic monitoring in recent years. Multiple devices have been proposed to assess blood pressure, cardiac output, and tissue perfusion. All have their own advantages and disadvantages and selection should be based on individual patient requirements and disease severity and adjusted according to ongoing patient evolution.



Publication History

Article published online:
16 October 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Ait-Oufella H, Lemoinne S, Boelle PY. et al. Mottling score predicts survival in septic shock. Intensive Care Med 2011; 37 (05) 801-807
  • 2 Bourcier S, Pichereau C, Boelle PY. et al. Toe-to-room temperature gradient correlates with tissue perfusion and predicts outcome in selected critically ill patients with severe infections. Ann Intensive Care 2016; 6 (01) 63
  • 3 Lima A, van Genderen ME, van Bommel J, Klijn E, Jansem T, Bakker J. Nitroglycerin reverts clinical manifestations of poor peripheral perfusion in patients with circulatory shock. Crit Care 2014; 18 (03) R126
  • 4 Hiemstra B, Eck RJ, Keus F, van der Horst ICC. Clinical examination for diagnosing circulatory shock. Curr Opin Crit Care 2017; 23 (04) 293-301
  • 5 Ait-Oufella H, Bakker J. Understanding clinical signs of poor tissue perfusion during septic shock. Intensive Care Med 2016; 42 (12) 2070-2072
  • 6 Hernández G, Cavalcanti AB, Ospina-Tascón G. et al; ANDROMEDA-SHOCK Study Investigators. Early goal-directed therapy using a physiological holistic view: the ANDROMEDA-SHOCK-a randomized controlled trial. Ann Intensive Care 2018; 8 (01) 52
  • 7 Alsma J, van Saase JLCM, Nanayakkara PWB. et al; FAMOUS Study Group*. The power of flash mob research: conducting a nationwide observational clinical study on capillary refill time in a single day. Chest 2017; 151 (05) 1106-1113
  • 8 Grissom CK, Morris AH, Lanken PN. et al; National Institutes of Health/National Heart, Lung and Blood Institute Acute Respiratory Distress. Association of physical examination with pulmonary artery catheter parameters in acute lung injury. Crit Care Med 2009; 37 (10) 2720-2726
  • 9 Kazune S, Caica A, Volceka K, Suba O, Rubins U, Grabovskis A. Relationship of mottling score, skin microcirculatory perfusion indices and biomarkers of endothelial dysfunction in patients with septic shock: an observational study. Crit Care 2019; 23 (01) 311
  • 10 De Backer D, Vieillard-Baron A. Clinical examination: a trigger but not a substitute for hemodynamic evaluation. Intensive Care Med 2019; 45 (02) 269-271
  • 11 Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent JL. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock?. Intensive Care Med 2012; 38 (03) 422-428
  • 12 Vincent JL, Nielsen ND, Shapiro NI. et al. Mean arterial pressure and mortality in patients with distributive shock: a retrospective analysis of the MIMIC-III database. Ann Intensive Care 2018; 8 (01) 107
  • 13 Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettilä V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med 2005; 31 (08) 1066-1071
  • 14 Lamontagne F, Richards-Belle A, Thomas K. et al; 65 trial investigators. Effect of reduced exposure to vasopressors on 90-day mortality in older critically ill patients with vasodilatory hypotension: a randomized clinical trial. JAMA 2020; 323: 938-949
  • 15 Asfar P, Meziani F, Hamel JF. et al; SEPSISPAM Investigators. High versus low blood-pressure target in patients with septic shock. N Engl J Med 2014; 370 (17) 1583-1593
  • 16 Gershengorn HB, Stelfox HT, Niven DJ, Wunsch H. Association of premorbid blood pressure with vasopressor infusion duration in patients with shock. Am J Respir Crit Care Med 2020; 202 (01) 91-99
  • 17 De Backer D, Teboul JL, Saugel B. Septic shock patients with adequate tissue perfusion parameters still need the recommended minimal mean arterial pressure: for sure. J Crit Care 2020; 56: 305-307
  • 18 De Backer D, Foulon P. Minimizing catecholamines and optimizing perfusion. Crit Care 2019; 23 (Suppl. 01) 149
  • 19 Marquez J, McCurry K, Severyn DA, Pinsky MR. Ability of pulse power, esophageal Doppler, and arterial pulse pressure to estimate rapid changes in stroke volume in humans. Crit Care Med 2008; 36 (11) 3001-3007
  • 20 Michard F, Boussat S, Chemla D. et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 2000; 162 (01) 134-138
  • 21 Cecconi M, De Backer D, Antonelli M. et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014; 40 (12) 1795-1815
  • 22 Swan HJC, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 1970; 283 (09) 447-451
  • 23 De Backer D, Vincent JL. The pulmonary artery catheter: is it still alive?. Curr Opin Crit Care 2018; 24 (03) 204-208
  • 24 De Backer D, Bakker J, Cecconi M. et al. Alternatives to the Swan-Ganz catheter. Intensive Care Med 2018; 44 (06) 730-741
  • 25 Monnet X, Vaquer S, Anguel N. et al. Comparison of pulse contour analysis by Pulsioflex and Vigileo to measure and track changes of cardiac output in critically ill patients. Br J Anaesth 2015; 114 (02) 235-243
  • 26 Gopal S, Do T, Pooni JS, Martinelli G. Validation of cardiac output studies from the Mostcare compared to a pulmonary artery catheter in septic patients. Minerva Anestesiol 2014; 80 (03) 314-323
  • 27 Scheeren TW, Wiesenack C, Compton FD. et al. Performance of a minimally invasive cardiac output monitoring system (Flotrac/Vigileo). Br J Anaesth 2008; 101 (02) 279-280
  • 28 Scolletta S, Franchi F, Romagnoli S. et al; Pulse wave analysis Cardiac Output validation (PulseCOval) Group. Comparison between Doppler-echocardiography and uncalibrated pulse contour method for cardiac output measurement: A multicenter observational study. Crit Care Med 2016; 44 (07) 1370-1379
  • 29 De Backer D, Marx G, Tan A. et al. Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients. Intensive Care Med 2011; 37 (02) 233-240
  • 30 Bendjelid K, Giraud R, Siegenthaler N, Michard F. Validation of a new transpulmonary thermodilution system to assess global end-diastolic volume and extravascular lung water. Crit Care 2010; 14 (06) R209
  • 31 Monnet X, Persichini R, Ktari M, Jozwiak M, Richard C, Teboul JL. Precision of the transpulmonary thermodilution measurements. Crit Care 2011; 15 (04) R204
  • 32 Cecconi M, Dawson D, Grounds RM, Rhodes A. Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Intensive Care Med 2009; 35 (03) 498-504
  • 33 Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL. Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med 2008; 36 (02) 434-440
  • 34 Monnet X, Teboul JL. Transpulmonary thermodilution: advantages and limits. Crit Care 2017; 21 (01) 147
  • 35 Teboul JL, Saugel B, Cecconi M. et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med 2016; 42 (09) 1350-1359
  • 36 Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med 2007; 33 (03) 448-453
  • 37 Fischer MO, Joosten A, Desebbe O. et al. Interchangeability of cardiac output measurements between non-invasive photoplethysmography and bolus thermodilution: A systematic review and individual patient data meta-analysis. Anaesth Crit Care Pain Med 2020; 39 (01) 75-85
  • 38 Monnet X, Dres M, Ferré A. et al. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices. Br J Anaesth 2012; 109 (03) 330-338
  • 39 Squara P, Rotcajg D, Denjean D, Estagnasie P, Brusset A. Comparison of monitoring performance of Bioreactance vs. pulse contour during lung recruitment maneuvers. Crit Care 2009; 13 (04) R125
  • 40 Marqué S, Cariou A, Chiche JD, Squara P. Comparison between Flotrac-Vigileo and Bioreactance, a totally noninvasive method for cardiac output monitoring. Crit Care 2009; 13 (03) R73
  • 41 Fagnoul D, Vincent JL, Backer D. Cardiac output measurements using the bioreactance technique in critically ill patients. Crit Care 2012; 16 (06) 460
  • 42 Douglas IS, Alapat PM, Corl KA. et al. Fluid response evaluation in sepsis hypotension and shock: a randomized clinical trial. Chest 2012; (e-pub ahead of print) DOI: 10.1016/j.chest.2020.04.025.
  • 43 Mercado P, Maizel J, Beyls C. et al. Transthoracic echocardiography: an accurate and precise method for estimating cardiac output in the critically ill patient. Crit Care 2017; 21 (01) 136
  • 44 De Backer D, Cholley BP, Slama M, Vieillard-Baron A, Vignon P. eds. Hemodynamic Monitoring Using Echocardiography in the Critically Ill. Heidelberg, Germany: Springer-Verlag; 2011
  • 45 Wong A, Galarza L, Forni L. et al; ESICM Critical Care Ultrasound Group. Recommendations for core critical care ultrasound competencies as a part of specialist training in multidisciplinary intensive care: a framework proposed by the European Society of Intensive Care Medicine (ESICM). Crit Care 2020; 24 (01) 393
  • 46 Atlas G, Brealey D, Dhar S, Dikta G, Singer M. Additional hemodynamic measurements with an esophageal Doppler monitor: a preliminary report of compliance, force, kinetic energy, and afterload in the clinical setting. J Clin Monit Comput 2012; 26 (06) 473-482
  • 47 Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 1995; 130 (04) 423-429
  • 48 Challand C, Struthers R, Sneyd JR. et al. Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. Br J Anaesth 2012; 108 (01) 53-62
  • 49 De Backer D. Detailing the cardiovascular profile in shock patients. Crit Care 2017; 21 (Suppl. 03) 311
  • 50 Vincent JL, De Backer D. From early goal-directed therapy to late(r) Scvo2 checks. Chest 2018; 154 (06) 1267-1269
  • 51 Rhodes A, Evans LE, Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 2017; 45 (03) 486-552
  • 52 Monnet X, Rienzo M, Osman D. et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 2006; 34 (05) 1402-1407
  • 53 De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 2005; 31 (04) 517-523
  • 54 De Backer D, Pinsky MR. Can one predict fluid responsiveness in spontaneously breathing patients?. Intensive Care Med 2007; 33 (07) 1111-1113
  • 55 Heenen S, De Backer D, Vincent JL. How can the response to volume expansion in patients with spontaneous respiratory movements be predicted?. Crit Care 2006; 10 (04) R102
  • 56 Mahjoub Y, Pila C, Friggeri A. et al. Assessing fluid responsiveness in critically ill patients: False-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med 2009; 37 (09) 2570-2575
  • 57 De Backer D, Vincent JL. Should we measure the central venous pressure to guide fluid management? Ten answers to 10 questions. Crit Care 2018; 22 (01) 43
  • 58 Biais M, Ehrmann S, Mari A. et al; AzuRea Group. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care 2014; 18 (06) 587
  • 59 Eskesen TG, Wetterslev M, Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med 2016; 42 (03) 324-332
  • 60 Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med 2006; 34 (05) 1333-1337
  • 61 Cecconi M, Hofer C, Teboul JL. et al; FENICE Investigators, ESICM Trial Group. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med 2015; 41 (09) 1529-1537
  • 62 Hamzaoui O, Gouëzel C, Jozwiak M. et al. Increase in central venous pressure during passive leg raising cannot detect preload unresponsiveness. Crit Care Med 2020; 48 (08) e684-e689
  • 63 De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 2002; 166 (01) 98-104
  • 64 De Backer D, Donadello K, Sakr Y. et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 2013; 41 (03) 791-799
  • 65 Spanos A, Jhanji S, Vivian-Smith A, Harris T, Pearse RM. Early microvascular changes in sepsis and severe sepsis. Shock 2010; 33 (04) 387-391
  • 66 Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 2002; 360 (9343): 1395-1396
  • 67 Trzeciak S, McCoy JV, Phillip Dellinger R. et al; Microcirculatory Alterations in Resuscitation and Shock (MARS) investigators. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 2008; 34 (12) 2210-2217
  • 68 De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 2004; 147 (01) 91-99
  • 69 den Uil CA, Lagrand WK, van der Ent M. et al. Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J 2010; 31 (24) 3032-3039
  • 70 Tachon G, Harrois A, Tanaka S. et al. Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med 2014; 42 (06) 1433-1441
  • 71 Jhanji S, Lee C, Watson D, Hinds C, Pearse RM. Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications. Intensive Care Med 2009; 35 (04) 671-677
  • 72 Ospina-Tascón GA, Nieto Calvache AJ, Quiñones E. et al. Microcirculatory blood flow derangements during severe preeclampsia and HELLP syndrome. Pregnancy Hypertens 2017; 10: 124-130
  • 73 Tanaka S, Harrois A, Nicolaï C. et al. Qualitative real-time analysis by nurses of sublingual microcirculation in intensive care unit: the MICRONURSE study. Crit Care 2015; 19: 388