Thromb Haemost 2021; 121(04): 484-494
DOI: 10.1055/s-0040-1718733
Cellular Haemostasis and Platelets

Impaired Platelet Function in Sept8-Deficient Mice In Vitro

Katharina Neubauer*
1   Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
,
Kerstin Jurk*
2   Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
,
Victoria Petermann
2   Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
,
Elena Kumm
2   Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
,
Barbara Zieger
1   Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
› Author Affiliations
Funding This work was funded by Deutsche Forschungsgemeinschaft DFG (ZI 486/4-1 and ZI 486/8-1) and by the German Federal Ministry of Education and Research (BMBF 01EO1503). We thank PD Dr. Hauke Werner (Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany) for providing the Sept8 −/− mouse and Eileen Lerner and Anja Kahle for outstanding technical assistance.

Abstract

Septins (Septs) are a widely expressed protein family of 13 mammalian members, recognized as a unique component of the cytoskeleton. In human platelets, we previously described that SEPT4 and SEPT8 are localized surrounding α-granules and move to the platelet surface after activation, indicating a possible role in platelet physiology. In this study, we investigated the impact of Sept8 on platelet function in vitro using Sept8-deficient mouse platelets. Deletion of Sept8 in mouse platelets caused a pronounced defect in activation of the fibrinogen receptor integrin αIIbβ3, α-granule exocytosis, and aggregation, especially in response to the glycoprotein VI agonist convulxin. In contrast, δ-granule and lysosome exocytosis of Sept8-deficient platelets was comparable to wild-type platelets. Sept8-deficient platelet binding to immobilized fibrinogen under static conditions was diminished and spreading delayed. The procoagulant activity of Sept8-deficient platelets was reduced in response to convulxin as determined by lactadherin binding. Also thrombin generation was decreased relative to controls. Thus, Sept8 is required for efficient integrin αIIbβ3 activation, α-granule release, platelet aggregation, and contributes to platelet-dependent thrombin generation. These results revealed Sept8 as a modulator of distinct platelet functions involved in primary and secondary hemostatic processes.

* These authors contributed equally to this work.


Supplementary Material



Publication History

Received: 17 July 2020

Accepted: 11 September 2020

Article published online:
17 November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hartwell LH. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 1971; 69 (02) 265-276
  • 2 Kinoshita M. Assembly of mammalian septins. J Biochem 2003; 134 (04) 491-496
  • 3 Kinoshita M. Diversity of septin scaffolds. Curr Opin Cell Biol 2006; 18 (01) 54-60
  • 4 Bridges AA, Gladfelter AS. Septin form and function at the cell cortex. J Biol Chem 2015; 290 (28) 17173-17180
  • 5 Mostowy S, Bonazzi M, Hamon MA. et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 2010; 8 (05) 433-444
  • 6 Ihara M, Kinoshita A, Yamada S. et al. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 2005; 8 (03) 343-352
  • 7 Tokhtaeva E, Capri J, Marcus EA. et al. Septin dynamics are essential for exocytosis. J Biol Chem 2015; 290 (09) 5280-5297
  • 8 Bartsch I, Sandrock K, Lanza F. et al. Deletion of human GP1BB and SEPT5 is associated with Bernard-Soulier syndrome, platelet secretion defect, polymicrogyria, and developmental delay. Thromb Haemost 2011; 106 (03) 475-483
  • 9 Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 8 (11) 1227-1234
  • 10 Sandrock-Lang K, Wentzell R, Santoso S, Zieger B. Inherited platelet disorders. Hamostaseologie 2016; 36 (03) 178-186
  • 11 Shattil SJ. Signaling through platelet integrin alpha IIb beta 3: inside-out, outside-in, and sideways. Thromb Haemost 1999; 82 (02) 318-325
  • 12 Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69 (01) 11-25
  • 13 Agbani EO, Poole AW. Procoagulant platelets: generation, function, and therapeutic targeting in thrombosis. Blood 2017; 130 (20) 2171-2179
  • 14 Jurk K, Kehrel BE. Platelets: physiology and biochemistry. Semin Thromb Hemost 2005; 31 (04) 381-392
  • 15 Bläser S, Horn J, Würmell P. et al. The novel human platelet septin Sept8 is an interaction partner of SEPT4. Thromb Haemost 2004; 91 (05) 959-966
  • 16 Patzig J, Erwig MS, Tenzer S. et al. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. eLife 2016; 5: 5
  • 17 Steven S, Jurk K, Kopp M. et al. Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice. Br J Pharmacol 2017; 174 (12) 1620-1632
  • 18 Subramaniam S, Jurk K, Hobohm L. et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood 2017; 129 (16) 2291-2302
  • 19 Kossmann S, Lagrange J, Jäckel S. et al. Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension. Sci Transl Med 2017; 9 (375) eaah4923
  • 20 Yagi M, Zieger B, Roth GJ, Ware J. Structure and expression of the human septin gene HCDCREL-1. Gene 1998; 212 (02) 229-236
  • 21 Zieger B, Tran H, Hainmann I. et al. Characterization and expression analysis of two human septin genes, PNUTL1 and PNUTL2. Gene 2000; 261 (02) 197-203
  • 22 Bläser S, Jersch K, Hainmann I. et al. Isolation of new splice isoforms, characterization and expression analysis of the human septin Sept8 (KIAA0202). Gene 2003; 312: 313-320
  • 23 Bartsch I, Bläser S, Röseler S. et al. Human endothelial and platelet septin SEPT11: cloning of novel variants and characterisation of interaction partners. Thromb Haemost 2010; 104 (06) 1201-1210
  • 24 Sandrock K, Bartsch I, Bläser S, Busse A, Busse E, Zieger B. Characterization of human septin interactions. Biol Chem 2011; 392 (8–9): 751-761
  • 25 Martínez C, Corral J, Dent JA, Sesma L, Vicente V, Ware J. Platelet septin complexes form rings and associate with the microtubular network. J Thromb Haemost 2006; 4 (06) 1388-1395
  • 26 Byers B, Goetsch L. A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol 1976; 69 (03) 717-721
  • 27 Dent J, Kato K, Peng XR. et al. A prototypic platelet septin and its participation in secretion. Proc Natl Acad Sci U S A 2002; 99 (05) 3064-3069
  • 28 Beites CL, Peng XR, Trimble WS. Expression and analysis of properties of septin CDCrel-1 in exocytosis. Methods Enzymol 2001; 329: 499-510
  • 29 Beites CL, Xie H, Bowser R, Trimble WS. The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci 1999; 2 (05) 434-439
  • 30 Ito H, Atsuzawa K, Morishita R. et al. Sept8 controls the binding of vesicle-associated membrane protein 2 to synaptophysin. J Neurochem 2009; 108 (04) 867-880
  • 31 Neubauer K, Boeckelmann D, Koehler U. et al. Hereditary neuralgic amyotrophy in childhood caused by duplication within the SEPT9 gene: a family study. Cytoskeleton (Hoboken) 2019; 76 (01) 131-136
  • 32 Randriamboavonjy V, Isaak J, Elgheznawy A. et al. Calpain inhibition stabilizes the platelet proteome and reactivity in diabetes. Blood 2012; 120 (02) 415-423
  • 33 Kato K, Martinez C, Russell S. et al. Genetic deletion of mouse platelet glycoprotein Ibbeta produces a Bernard-Soulier phenotype with increased alpha-granule size. Blood 2004; 104 (08) 2339-2344
  • 34 Neubauer K, Neubauer B, Seidl M, Zieger B. Characterization of septin expression in normal and fibrotic kidneys. Cytoskeleton (Hoboken) 2019; 76 (01) 143-153
  • 35 Mostowy S, Cossart P. Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 2012; 13 (03) 183-194
  • 36 Savage B, Shattil SJ, Ruggeri ZM. Modulation of platelet function through adhesion receptors. A dual role for glycoprotein IIb-IIIa (integrin alpha IIb beta 3) mediated by fibrinogen and glycoprotein Ib-von Willebrand factor. J Biol Chem 1992; 267 (16) 11300-11306
  • 37 Agbani EO, van den Bosch MT, Brown E. et al. Coordinated membrane ballooning and procoagulant spreading in human platelets. Circulation 2015; 132 (15) 1414-1424
  • 38 Heemskerk JW, Bevers EM, Lindhout T. Platelet activation and blood coagulation. Thromb Haemost 2002; 88 (02) 186-193
  • 39 Elvers M. RhoGAPs and Rho GTPases in platelets. Hamostaseologie 2016; 36 (03) 168-177
  • 40 Pleines I, Hagedorn I, Gupta S. et al. Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood 2012; 119 (04) 1054-1063
  • 41 Castellano F, Montcourrier P, Guillemot JC. et al. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Curr Biol 1999; 9 (07) 351-360
  • 42 Bender M, May F, Lorenz V. et al. Combined in vivo depletion of glycoprotein VI and C-type lectin-like receptor 2 severely compromises hemostasis and abrogates arterial thrombosis in mice. Arterioscler Thromb Vasc Biol 2013; 33 (05) 926-934
  • 43 Nieswandt B, Schulte V, Bergmeier W. et al. Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J Exp Med 2001; 193 (04) 459-469
  • 44 Matus V, Valenzuela G, Sáez CG. et al. An adenine insertion in exon 6 of human GP6 generates a truncated protein associated with a bleeding disorder in four Chilean families. J Thromb Haemost 2013; 11 (09) 1751-1759
  • 45 Dumont B, Lasne D, Rothschild C. et al. Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood 2009; 114 (09) 1900-1903
  • 46 Azam M, Andrabi SS, Sahr KE, Kamath L, Kuliopulos A, Chishti AH. Disruption of the mouse mu-calpain gene reveals an essential role in platelet function. Mol Cell Biol 2001; 21 (06) 2213-2220
  • 47 Sellin ME, Sandblad L, Stenmark S, Gullberg M. Deciphering the rules governing assembly order of mammalian septin complexes. Mol Biol Cell 2011; 22 (17) 3152-3164