Semin Musculoskelet Radiol 2020; 24(06): 692-709
DOI: 10.1055/s-0040-1719103
Review Article

Interventional Techniques for Bone and Musculoskeletal Soft Tissue Tumors: Current Practices and Future Directions - Part I. Ablation

1   Department of Radiology, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
2   School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom
,
2   School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom
,
3   Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
,
4   Department of Immunology, Genetics and Pathology (Oncology) and department of Surgical Sciences (Radiology), Uppsala University, Uppsala, Sweden
,
5   Department of Oncology, Karolinska Institutet, Karolinska University Hospital Stockholm, Sweden
,
6   Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom
,
7   Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Rostock, Germany
,
8   Department of Radiology, New York University Grossman School of Medicine, New York
,
1   Department of Radiology, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
› Author Affiliations

Abstract

Musculoskeletal (MSK) image-guided oncologic intervention is an established field within radiology. Numerous studies have described its clinical benefits, safety, cost effectiveness, patient satisfaction, and improved quality of life, thereby establishing image-guided oncologic intervention as a preferred pathway in treating patients presenting with specific benign MSK tumors. But there is a paradigm shift on the horizon because these techniques may also support established pillars (surgery, systemic treatment, radiotherapy) in the treatment of malignant MSK tumors. Unlike benign tumors, where they are used as primary therapy lines with curative intent, such interventions can be selected for malignant tumors as adjuvant treatment in painful or unstable bone or soft tissue lesions or as more palliative therapy strategies. Using examples from our clinical practices, we elaborate on the benefits of applying a multidisciplinary approach (traditionally involving MSK radiologists, oncologists, orthopaedic surgeons, microbiologists, pathologists, physiotherapists, and pain management experts), ideally within a sarcoma treatment center to deliver a patient-specific therapy plan and illustrate methods to assess the benefits of this model of care.

In this article, we review the current repertoire of ablation techniques, demonstrate why such procedures offer value-based alternatives to conventional treatments of specific tumors, and reflect on future directions. Additionally, we review the advantages and limitations of each technique and offer guidance to improve outcomes.



Publication History

Article published online:
11 December 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Gangi A, Tsoumakidou G, Buy X, Quoix E. Quality improvement guidelines for bone tumour management. Cardiovasc Intervent Radiol 2010; 33 (04) 706-713
  • 2 Beyer T, van Rijswijk CSP, Villagrán JM. et al. Correction to: European multicentre study on technical success and long-term clinical outcome of radiofrequency ablation for the treatment of spinal osteoid osteomas and osteoblastomas. Neuroradiology 2019; 61 (08) 943
  • 3 Weber MA, Sprengel SD, Omlor GW. et al. Clinical long-term outcome, technical success, and cost analysis of radiofrequency ablation for the treatment of osteoblastomas and spinal osteoid osteomas in comparison to open surgical resection. Skeletal Radiol 2015; 44 (07) 981-993
  • 4 Sugiyama H, Omonishi K, Yonehara S. et al. Characteristics of benign and malignant bone tumors registered in the Hiroshima Tumor Tissue Registry, 1973–2012. JBJS Open Access 2018; 3 (02) e0064
  • 5 Franchi A. Clinical cases in mineral and bone epidemiology and classification of bone tumors. Metabolism 2012; 9 (02) 92-95
  • 6 Surveillance, Epidemiology and End Results (SEER) Program, SEER Cancer Statistics Review (CSR) 1975–2016. . Updated February 14, 2020. Available at: https://seer.cancer.gov/archive/csr/1975_2016/2020
  • 7 Cancer Research UK Registry, Soft tissue sarcoma statistics. Available at: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/soft-tissue-sarcoma
  • 8 Cancer Research UK Registry, Bone sarcoma statistics. Available at: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bone-sarcoma#heading-Zero
  • 9 Isaac A, Dalili D, Dalili D, Weber M-A. State-of-the-art imaging for diagnosis of metastatic bone disease [in German]. Radiologe 2020; March 24 (Epub ahead of print)
  • 10 Vilanova JC. WHO classification of soft tissue tumors. In: Vanhoenacker FM, Parizel PM, Gielen JL. eds. Imaging of Soft Tissue Tumors. Cham, Switzerland: Springer; 2017: 187-196
  • 11 WHO Classification of Tumours Editorial Board, WHO Classification of Tumours. 5th ed. Vol 3.. Lyon, France: WHO; 2020
  • 12 Ishida Y, Qiu D, Maeda M. et al. Secondary cancers after a childhood cancer diagnosis: a nationwide hospital-based retrospective cohort study in Japan. Int J Clin Oncol 2016; 21 (03) 506-516
  • 13 Joo MW, Kang YK, Ogura K. et al. Post-radiation sarcoma: a study by the Eastern Asian Musculoskeletal Oncology Group. PLoS One 2018; 13 (10) e0204927
  • 14 Hasan K, Nguyen DM, Conway SA. Benign bone tumors when they coexist with common orthopaedic conditions. J Knee Surg 2019; 32 (04) 296-304
  • 15 Ahmed M, Solbiati L, Brace CL. International Working Group on Image-guided Tumor Ablation, Interventional Oncology Sans Frontières Expert Panel, Technology Assessment Committee of the Society of Interventional Radiology, Standard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe. et al; Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update. Radiology 2014; 273 (01) 241-260
  • 16 Lalam R, Bloem JL, Noebauer-Huhmann IM. et al. ESSR Consensus Document for Detection, Characterization, and Referral Pathway for Tumors and Tumorlike Lesions of Bone. Semin Musculoskelet Radiol 2017; 21 (05) 630-647
  • 17 Papakonstantinou O, Isaac A, Dalili D, Noebauer-Huhmann IM. T2-weighted hypointense tumors and tumor-like lesions. Semin Musculoskelet Radiol 2019; 23 (01) 58-75
  • 18 Afonso PD, Isaac A, Villagrán JM. Chondroid tumors as incidental findings and differential diagnosis between enchondromas and low-grade chondrosarcomas. Semin Musculoskelet Radiol 2019; 23 (01) 3-18
  • 19 Kostrzewa M, Diezler P, Michaely H. et al. Microwave ablation of osteoid osteomas using dynamic MR imaging for early treatment assessment: preliminary experience. J Vasc Interv Radiol 2014; 25 (01) 106-111
  • 20 Kostrzewa M, Henzler T, Schoenberg SO, Diehl SJ, Rathmann N. Clinical and quantitative MRI perfusion analysis of osteoid osteomas before and after microwave ablation. Anticancer Res 2019; 39 (06) 3053-3057
  • 21 Gondim Teixeira PA, Leplat C, Chen B. et al. Contrast-enhanced 3T MR perfusion of musculoskeletal tumours: T1 Value heterogeneity assessment and evaluation of the influence of T1 estimation methods on quantitative parameters. Eur Radiol 2017; 27 (12) 4903-4912
  • 22 Kintzelé L, Brandelik SC, Wuennemann F. et al. MRI patterns indicate treatment success and tumor relapse following radiofrequency ablation of osteoblastoma. Int J Hyperthermia 2020; 37 (01) 274-282
  • 23 Khodarahmi I, Isaac A, Fishman EK, Dalili D, Fritz J. Metal about the hip and artifact reduction techniques: from basic concepts to advanced imaging. Semin Musculoskelet Radiol 2019; 23 (03) e68-e81
  • 24 Sonnow L, Gilson WD, Raithel E, Nittka M, Wacker F, Fritz J. Instrument visualization using conventional and compressed sensing SEMAC for interventional MRI at 3T. J Magn Reson Imaging 2018; 47 (05) 1306-1315
  • 25 Romu T, Elander L, Leinhard OD. et al. Characterization of brown adipose tissue by water-fat separated magnetic resonance imaging. J Magn Reson Imaging 2015; 42 (06) 1639-1645
  • 26 Cazzato RL, Garnon J, De Marini P. et al. French multidisciplinary approach for the treatment of MSK tumors. Semin Musculoskelet Radiol 2020; 24 (03) 310-322
  • 27 Burke MC, Garg A, Youngner JM, Deshmukh SD, Omar IM. Initial experience with dual-energy computed tomography-guided bone biopsies of bone lesions that are occult on monoenergetic CT. Skeletal Radiol 2019; 48 (04) 605-613
  • 28 Dalili D, Isaac A, Rashidi A, Åström G, Fritz J. Image-guided sports medicine and musculoskeletal tumor interventions: a patient-centered model. Semin Musculoskelet Radiol 2020; 24 (03) 290-309
  • 29 Gennaro N, Sconfienza LM, Ambrogi F, Boveri S, Lanza E. Thermal ablation to relieve pain from metastatic bone disease: a systematic review. Skeletal Radiol 2019; 48 (08) 1161-1169
  • 30 Kurup AN, Callstrom MR. Expanding role of percutaneous ablative and consolidative treatments for musculoskeletal tumours. Clin Radiol 2017; 72 (08) 645-656
  • 31 Kaptan MA, Acu B, Öztunalı Ç, Çalışır C, İnan U, Bilgin M. Correlation of 3-T MRI and CT findings with patient symptoms and treatment outcome in radiofrequency ablation of osteoid osteoma. Acta Orthop Traumatol Turc 2019; 53 (04) 239-247
  • 32 Moon E, Tam MDBS, Kikano RN, Karuppasamy K. Prophylactic antibiotic guidelines in modern interventional radiology practice. Semin Intervent Radiol 2010; 27 (04) 327-337
  • 33 Vari A, Gangi A. Anesthesia practices for interventional radiology in Europe. Cardiovasc Intervent Radiol 2017; 40 (06) 803-813
  • 34 Gangi A, Alizadeh H, Wong L, Buy X, Dietemann JL, Roy C. Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology 2007; 242 (01) 293-301
  • 35 Fritz J, Dellon AL, Williams EH, Belzberg AJ, Carrino JA. 3-Tesla high-field magnetic resonance neurography for guiding nerve blocks and its role in pain management. Magn Reson Imaging Clin N Am 2015; 23 (04) 533-545
  • 36 Gangi A, Buy X. Percutaneous bone tumor management. Semin Intervent Radiol 2010; 27 (02) 124-136
  • 37 Shiels II WE, Mayerson JL. Percutaneous doxycycline treatment of aneurysmal bone cysts with low recurrence rate: a preliminary report. Clin Orthop Relat Res 2013; 471 (08) 2675-2683
  • 38 Tessari L, Cavezzi A, Frullini A. Preliminary experience with a new sclerosing foam in the treatment of varicose veins. Dermatologic Surg 2001; 27 (01) 58-60
  • 39 Choi WK, Bailey CR, Fritz J, Weiss CR. MR-guided sclerotherapy for the treatment of low-flow vascular malformations. Top Magn Reson Imaging 2018; 27 (03) 153-161
  • 40 Waikakul S, Asavamongkolkul A, Phimolsarnti R. Use of warm Ringer's lactate solution in the management of locally advanced giant cell tumor of bone. Int J Clin Oncol 2016; 21 (01) 177-185
  • 41 Luigi Cazzato R, Auloge P, De Marini P. et al. Percutaneous image-guided ablation of bone metastases: local tumor control in oligometastatic patients. Int J Hyperthermia 2018; 35 (01) 493-499
  • 42 Callstrom MR, Dupuy DE, Solomon SB. et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer 2013; 119 (05) 1033-1041
  • 43 Choi D, Crockard A, Bunger C. Global Spine Tumor Study Group. et al; Review of metastatic spine tumour classification and indications for surgery: the consensus statement of the Global Spine Tumour Study Group. Eur Spine J 2010; 19 (02) 215-222
  • 44 Dalili D, Isaac A, Cazzato RL. et al. Interventional techniques for bone and musculoskeletal soft tissue tumors: current practices and future directions. Part 2: stabilization. Semin Musculoskelet Radiol 2020
  • 45 Zoccali C, Teori G, Salducca N, Di Paola B, Adriani E. Arthroscopic guided biopsy and radiofrequency thermoablation of a benign neoplasm of the tibial spines area: a treatment option. BMC Musculoskelet Disord 2012; 13 (01) 52
  • 46 Li D, Madoff DC. Incorporating quality of life metrics in interventional oncology practice. Semin Intervent Radiol 2017; 34 (04) 313-321
  • 47 Cazzato RL, Auloge P, De Marini P. et al. Spinal tumor ablation: indications, techniques, and clinical management. Tech Vasc Interv Radiol 2020; 23 (02) 100677
  • 48 Cazzato RL, Palussière J, Auloge P. et al. Complications following percutaneous image-guided radiofrequency ablation of bone tumors: a 10-year dual center experience. Radiology 2020; 296 (01) 227-235
  • 49 Kurup AN, Schmit GD, Morris JM. et al. Avoiding complications in bone and soft tissue ablation. Cardiovasc Intervent Radiol 2017; 40 (02) 166-176
  • 50 Kurup AN, Morris JM, Schmit GD. et al. Neuroanatomic considerations in percutaneous tumor ablation. Radiographics 2013; 33 (04) 1195-1215
  • 51 Ankory R, Kadar A, Netzer D. et al. 3D imaging and stealth navigation instead of CT guidance for radiofrequency ablation of osteoid osteomas: a series of 52 patients. BMC Musculoskelet Disord 2019; 20 (01) 579
  • 52 Lipton A, Uzzo R, Amato RJ. et al. The science and practice of bone health in oncology: managing bone loss and metastasis in patients with solid tumors. J Natl Compr Canc Netw 2009; 7 (Suppl. 07) S1-S29 ; quiz S30
  • 53 Lane MD, Le HBQ, Lee S. et al. Combination radiofrequency ablation and cementoplasty for palliative treatment of painful neoplastic bone metastasis: experience with 53 treated lesions in 36 patients. Skeletal Radiol 2011; 40 (01) 25-32
  • 54 Littrup PJ, Bang HJ, Currier BP. et al. Soft-tissue cryoablation in diffuse locations: feasibility and intermediate term outcomes. J Vasc Interv Radiol 2013; 24 (12) 1817-1825
  • 55 Littrup PJ, Aoun HD, Adam B, Krycia M, Prus M, Shields A. Percutaneous cryoablation of hepatic tumors: long-term experience of a large U.S. series. Abdom Radiol (NY) 2016; 41 (04) 767-780
  • 56 Bing F, Garnon J, Tsoumakidou G, Enescu I, Ramamurthy N, Gangi A. Imaging-guided percutaneous cryotherapy of bone and soft-tissue tumors: what is the impact on the muscles around the ablation site?. AJR Am J Roentgenol 2014; 202 (06) 1361-1365
  • 57 Garnon J, Cazzato RL, Caudrelier J. et al. Adjunctive thermoprotection during percutaneous thermal ablation procedures: review of current techniques. Cardiovasc Intervent Radiol 2019; 42 (03) 344-357
  • 58 Auloge P, Cazzato RL, Rousseau C. et al. Complications of percutaneous bone tumor cryoablation: a 10-year experience. Radiology 2019; 291 (02) 521-528
  • 59 Lee TC, Guenette JP, Moses ZB, Chi JH. MRI-guided cryoablation of epidural malignancies in the spinal canal resulting in neural decompression and regrowth of bone. AJR Am J Roentgenol 2019; 212 (01) 205-208
  • 60 Lecigne R, Garnon J, Cazzato RL. et al. Transforaminal insertion of a thermocouple on the posterior vertebral wall combined with hydrodissection during lumbar spinal radiofrequency ablation. AJNR Am J Neuroradiol 2019; 40 (10) 1786-1790
  • 61 Kurup AN, Callstrom MR. Ablation of musculoskeletal metastases: pain palliation, fracture risk reduction, and oligometastatic disease. Tech Vasc Interv Radiol 2013; 16 (04) 253-261
  • 62 Khodarahmi I, Bonham LW, Weiss CR, Fritz J. Needle heating during interventional magnetic resonance imaging at 1.5- and 3.0-T field strengths. Invest Radiol 2020; 55 (06) 396-404
  • 63 Campbell C, Lubner MG, Hinshaw JL, Muñoz del Rio A, Brace CL. Contrast media-doped hydrodissection during thermal ablation: optimizing contrast media concentration for improved visibility on CT images. AJR Am J Roentgenol 2012; 199 (03) 677-682
  • 64 Lea W, Tutton S. Decision making: osteoplasty, ablation, or combined therapy for spinal metastases. Semin Intervent Radiol 2017; 34 (02) 121-131
  • 65 Cazzato RL, Garnon J, Ramamurthy N. et al. Percutaneous image-guided cryoablation: current applications and results in the oncologic field. Med Oncol 2016; 33 (12) 140
  • 66 Munk PL, Murphy KJ, Gangi A, Liu DM. Fire and ice: percutaneous ablative therapies and cement injection in management of metastatic disease of the spine. Semin Musculoskelet Radiol 2011; 15 (02) 125-134
  • 67 Garnon J, Koch G, Caudrelier J, Tsoumakidou G, Cazzato RL, Gangi A. Expanding the borders: Image-guided procedures for the treatment of musculoskeletal tumors. Diagn Interv Imaging 2017; 98 (09) 635-644
  • 68 Pimolsanti R, Wongkajornsilpa A, Chotiyarnwong P, Asavamongkolku A, Waikakul S. Effects of thermoablation with or without caffeine on giant cell tumour of bone. J Orthop Surg (Hong Kong) 2015; 23 (01) 95-99
  • 69 Rosenthal DI, Alexander A, Rosenberg AE, Springfield D. Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology 1992; 183 (01) 29-33
  • 70 Rosenthal D, Callstrom MR. Critical review and state of the art in interventional oncology: benign and metastatic disease involving bone. Radiology 2012; 262 (03) 765-780
  • 71 Husband DJ. Malignant spinal cord compression: prospective study of delays in referral and treatment. BMJ 1998; 317 (7150): 18-21
  • 72 Thacker PG, Callstrom MR, Curry TB. et al. Palliation of painful metastatic disease involving bone with imaging-guided treatment: comparison of patients' immediate response to radiofrequency ablation and cryoablation. AJR Am J Roentgenol 2011; 197 (02) 510-515
  • 73 Cazzato RL, Arrigoni F, Boatta E. et al. Percutaneous management of bone metastases: state of the art, interventional strategies and joint position statement of the Italian College of MSK Radiology (ICoMSKR) and the Italian College of Interventional Radiology (ICIR). Radiol Med (Torino) 2019; 124 (01) 34-49
  • 74 Mastier C, Gjorgjievska A, Thivolet A. et al. Musculoskeletal metastases management: the interventional radiologist's toolbox. Semin Intervent Radiol 2018; 35 (04) 281-289
  • 75 Mayer T, Cazzato RL, De Marini P. et al. Spinal metastases treated with bipolar radiofrequency ablation with increased (>70°C) target temperature: pain management and local tumor control. Diagn Interv Imaging 2020; May 29 (Epub ahead of print)
  • 76 Thompson SM, Callstrom MR, McKusick MA, Woodrum DA. Initial results of image-guided percutaneous ablation as second-line treatment for symptomatic vascular anomalies. Cardiovasc Intervent Radiol 2015; 38 (05) 1171-1178
  • 77 Sag AA, Maybody M, Comstock C, Solomon SB. Percutaneous image-guided ablation of breast tumors: an overview. Semin Intervent Radiol 2014; 31 (02) 193-202
  • 78 Erinjeri JP, Fine GC, Adema GJ. et al. Immunotherapy and the interventional oncologist: challenges and opportunities-a society of interventional oncology white paper. Radiology 2019; 292 (01) 25-34
  • 79 Kim D, Erinjeri JP. Postablation immune microenvironment: synergy between interventional oncology and immuno-oncology. Semin Intervent Radiol 2019; 36 (04) 334-342
  • 80 Meek RD, Mills MK, Hanrahan CJ. et al. Pearls and pitfalls for soft-tissue and bone biopsies: a cross-institutional review. Radiographics 2020; 40 (01) 266-290
  • 81 Cazzato RL, Auloge P, Dalili D. et al. Percutaneous image-guided cryoablation of osteoblastoma. AJR Am J Roentgenol 2019; 213 (05) 1157-1162
  • 82 Autrusseau P-A, Cazzato RL, De Marini P. et al. Percutaneous MR-guided cryoablation of low-flow vascular malformation: technical feasibility, safety and clinical efficacy. Cardiovasc Intervent Radiol 2020; 43 (06) 858-865
  • 83 Fritz J, Sonnow L, Morris CD. Adjuvant MRI-guided percutaneous cryoablation treatment for aneurysmal bone cyst. Skeletal Radiol 2019; 48 (07) 1149-1153
  • 84 Thibaut A, Bouhamama A, Boespflug A. et al. Percutaneous cryotherapy for treatment of chondroblastoma: early experience. Cardiovasc Intervent Radiol 2019; 42 (02) 304-307
  • 85 Cazzato RL, Garnon J, Shaygi B. et al. How to perform a routine cryoablation under MRI guidance. Top Magn Reson Imaging 2018; 27 (01) 33-38
  • 86 Cazzato RL, De Marini P, Leclerc L. et al. Large nearly spherical ablation zones are achieved with simultaneous multi-antenna microwave ablation applied to treat liver tumours. Eur Radiol 2020; 30 (02) 971-975
  • 87 Deib G, Deldar B, Hui F, Barr JS, Khan MA. Percutaneous microwave ablation and cementoplasty: clinical utility in the treatment of painful extraspinal osseous metastatic disease and myeloma. AJR Am J Roentgenol 2019; 212 (06) 1-8
  • 88 Khan MA, Deib G, Deldar B, Patel AM, Barr JS. Efficacy and safety of percutaneous microwave ablation and cementoplasty in the treatment of painful spinal metastases and myeloma. AJNR Am J Neuroradiol 2018; 39 (07) 1376-1383
  • 89 Sequeiros RB, Fritz J, Ojala R, Carrino JA. Percutaneous magnetic resonance imaging-guided bone tumor management and magnetic resonance imaging-guided bone therapy. Top Magn Reson Imaging 2011; 22 (04) 171-177
  • 90 Napoli A, Mastantuono M, Cavallo Marincola B. et al. Osteoid osteoma: MR-guided focused ultrasound for entirely noninvasive treatment. Radiology 2013; 267 (02) 514-521
  • 91 Bazzocchi A, Napoli A, Sacconi B. et al. MRI-guided focused ultrasound surgery in musculoskeletal diseases: the hot topics. Br J Radiol 2016; 89 (1057): 20150358
  • 92 Bing F, Vappou J, de Mathelin M, Gangi A. Targetability of osteoid osteomas and bone metastases by MR-guided high intensity focused ultrasound (MRgHIFU). Int J Hyperthermia 2018; 35 (01) 471-479
  • 93 Huisman M, ter Haar G, Napoli A. et al. International consensus on use of focused ultrasound for painful bone metastases: current status and future directions. Int J Hyperthermia 2015; 31 (03) 251-259
  • 94 Napoli A, Anzidei M, Marincola BC. et al. MR imaging-guided focused ultrasound for treatment of bone metastasis. Radiographics 2013; 33 (06) 1555-1568
  • 95 Napoli A, Bazzocchi A, Scipione R. et al. Noninvasive therapy for osteoid osteoma: a prospective developmental study with MR imaging-guided high-intensity focused ultrasound. Radiology 2017; 285 (01) 186-196
  • 96 Ghanouni P, Dobrotwir A, Bazzocchi A. et al. Magnetic resonance-guided focused ultrasound treatment of extra-abdominal desmoid tumors: a retrospective multicenter study. Eur Radiol 2017; 27 (02) 732-740
  • 97 Scipione R, Anzidei M, Bazzocchi A, Gagliardo C, Catalano C, Napoli A. HIFU for bone metastases and other musculoskeletal applications. Semin Intervent Radiol 2018; 35 (04) 261-267
  • 98 Deipolyi AR, Golberg A, Yarmush ML, Arellano RS, Oklu R. Irreversible electroporation: evolution of a laboratory technique in interventional oncology. Diagn Interv Radiol 2014; 20 (02) 147-154
  • 99 Krum H, Schlaich M, Whitbourn R. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009; 373 (9671): 1275-1281
  • 100 Arena CB, Sano MB, Rossmeisl Jr JH. et al. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng Online 2011; 10: 102
  • 101 Cazzato RL, Garnon J, Koch G. et al. Musculoskeletal interventional oncology: current and future practices. Br J Radiol 2020; August 12 (Epub ahead of print)