CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2021; 56(01): 036-041
DOI: 10.1055/s-0040-1721368
Artigo Original
Asami

Análise de elementos finitos de um dispositivo de dinamização controlada para fixação circular externa

Article in several languages: português | English
1   Escola de Ciências da Vida, Departamento de Ciências da Saúde, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
,
1   Escola de Ciências da Vida, Departamento de Ciências da Saúde, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
,
2   Departamento de Ortopedia e Traumatologia, Hospital Universitário Cajuru, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
,
3   Programa de Pós-Graduação em Odontologia, Faculdade de Ciências da Vida, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
,
4   Programa de Pós-Graduação em Medicina, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
,
3   Programa de Pós-Graduação em Odontologia, Faculdade de Ciências da Vida, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
› Author Affiliations

Resumo

Objetivo Construir um protótipo virtual de um dispositivo de fixação circular externa para fraturas em ossos longos com dinamização controlada a partir de dois materiais diferentes e prever seu comportamento mecânico por meio da análise de elementos finitos AEF).

Método Modelos tridimensionais compostos de duas peças metálicas unidas por uma junta deslizante em rabo de andorinha e um amortecedor de silicone de alta densidade foram criados em um software. Análises de elementos finitos distintas foram simuladas considerando dois materiais (aço inoxidável ou titânio), modos (bloqueado ou dinamizado) e condições de carregamento (estático/pontual ou dinâmico/0,5 segundo) diferentes com carga axial uniforme de 150 kg na porção superior do dispositivo.

Resultados O modelo de elementos finitos (EFs) apresentou 81.872 nós e 45.922 elementos. Com aço inoxidável, o pico de tensão máxima (140,98 MPa) foi alcançado com o dispositivo bloqueado e sob carga estática, enquanto o maior deslocamento (2.415 × 10−3 mm) foi obtido com o dispositivo bloqueado e sob carga dinâmica. Com titânio, o pico de tensão máxima (141,45 MPa) ocorreu com o dispositivo bloqueado e sob carga estática, enquanto o maior deslocamento (3.975 × 10−3 mm) foi observado com o dispositivo bloqueado e sob carga dinâmica.

Conclusão O protótipo do dispositivo desempenhou o papel de suporte de tensão com deformação aceitável nos dois modos, bloqueado ou dinamizado, e pode ser fabricado com aço inoxidável ou titânio.



Publication History

Received: 31 January 2020

Accepted: 17 September 2020

Article published online:
19 February 2021

© 2021. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald; 1892
  • 2 Perren S, Boitzy A. Cellular differentiation and bone biomechanics during the consolidation of a fracture. Clin Anat 1978; 1: 13-28
  • 3 Glatt V, Matthys R. Adjustable stiffness, external fixator for the rat femur osteotomy and segmental bone defect models. J Vis Exp 2014; 9 (92) e51558
  • 4 Compton J, Fragomen A, Rozbruch SR. Skeletal Repair in Distraction Osteogenesis: Mechanisms and Enhancements. JBJS Rev 2015; 3 (08) pii: 01874474–201508000–00002
  • 5 Henderson DJ, Rushbrook JL, Stewart TD, Harwood PJ. What Are the Biomechanical Effects of Half-pin and Fine-wire Configurations on Fracture Site Movement in Circular Frames?. Clin Orthop Relat Res 2016; 474 (04) 1041-1049
  • 6 Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec 1987; 219 (01) 1-9
  • 7 Lazo-Zbikowski J, Aguilar F, Mozo F, Gonzalez-Buendia R, Lazo JM. Biocompression external fixation. Sliding external osteosynthesis. Clin Orthop Relat Res 1986; (206) 169-184
  • 8 Marsh JL, Nepola JV, Wuest TK, Osteen D, Cox K, Oppenheim W. Unilateral external fixation until healing with the dynamic axial fixator for severe open tibial fractures. J Orthop Trauma 1991; 5 (03) 341-348
  • 9 Barquet A, Massaferro J, Dubra A, Milans C, Castiglioni O. The dynamic ASIF-BM tubular external fixator in the treatment of open fractures of the shaft of the tibia. Injury 1992; 23 (07) 461-466
  • 10 Foxworthy M, Pringle RM. Dynamization timing and its effect on bone healing when using the Orthofix Dynamic Axial Fixator. Injury 1995; 26 (02) 117-119
  • 11 Moss DP, Tejwani NC. Biomechanics of external fixation: a review of the literature. Bull NYU Hosp Jt Dis 2007; 65 (04) 294-299
  • 12 Fragomen AT, Rozbruch SR. The mechanics of external fixation. HSS J 2007; 3 (01) 13-29
  • 13 Roseiro LM, Neto MA, Amaro A, Leal RP, Samarra MC. External fixator configurations in tibia fractures: 1D optimization and 3D analysis comparison. Comput Methods Programs Biomed 2014; 113 (01) 360-370
  • 14 Lotti RS, Machado AW, Mazzieiro ET, Landre Júnior J. Scientific application of finite elemento method. Rev Dent Press Ortodon Ortop Facial 2006; 11: 35-43
  • 15 Easley SK, Pal S, Tomaszewski PR, Petrella AJ, Rullkoetter PJ, Laz PJ. Finite element-based probabilistic analysis tool for orthopaedic applications. Comput Methods Programs Biomed 2007; 85 (01) 32-40
  • 16 Kluess D, Souffrant R, Mittelmeier W, Wree A, Schmitz KP, Bader R. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation. Comput Methods Programs Biomed 2009; 95 (01) 23-30
  • 17 Burgers PT, Van Riel MP, Vogels LM, Stam R, Patka P, Van Lieshout EM. Rigidity of unilateral external fixators--a biomechanical study. Injury 2011; 42 (12) 1449-1454
  • 18 Gao Y, Jin Z, Wang L, Wang M. Finite element analysis of sliding distance and contact mechanics of hip implant under dynamic walking conditions. Proc Inst Mech Eng H 2015; 229 (06) 469-474
  • 19 Pan M, Chai L, Xue F, Ding L, Tang G, Lv B. Comparisons of external fixator combined with limited internal fixation and open reduction and internal fixation for Sanders type 2 calcaneal fractures: Finite element analysis and clinical outcome. Bone Joint Res 2017; 6 (07) 433-438