Neurochirurgie Scan 2015; 03(04): 303-316
DOI: 10.1055/s-0041-03076
Fortbildung
Neurochirurgische Intensivmedizin und Neurotraumatologie
© Georg Thieme Verlag KG Stuttgart · New York

Die Intensivtherapie des schweren Schädel-Hirn-Traumas

Peter Horn
,
Harald Krenzlin
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
03. November 2015 (online)

Zusammenfassung

Das Schädel-Hirn-Trauma (SHT) stellt eine der häufigsten Ursachen für Tod und permanente Behinderung in Industrienationen dar. Dem aktuell zu beobachtenden Rückgang von schweren SHT im Straßenverkehr steht eine Zunahme der schweren Verletzungen hauptsächlich durch Sturz und Fall, insbesondere bei älteren Patienten, entgegen. Dies führt durch Veränderung der Epidemiologie zu einer Abnahme diffuser Hochgeschwindigkeitsverletzungen bei gleichzeitiger Zunahme der Anzahl fokaler Verletzungen, z. B. von Kontusionen. Etwa 15 % der Patienten mit SHT benötigen eine spezialisierte intensivmedizinische Behandlung [1].

Im Folgenden werden die pathophysiologischen Grundlagen der unterschiedlichen Verletzungsmuster geschildert und die aktuellen Möglichkeiten in Diagnostik, spezifischer Therapie und Prognoseabschätzung nach schwerem SHT dargestellt.

 
  • Literatur

  • 1 Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet neurology 2008; 7: 728-741
  • 2 Utomo WK, Gabbe BJ, Simpson PM et al. Predictors of in-hospital mortality and 6-month functional outcomes in older adults after moderate to severe traumatic brain injury. Injury 2009; 40: 973-977
  • 3 Aries MJ, Czosnyka M, Budohoski KP et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Critical Care Med 2012; 40: 2456-2463
  • 4 Balestreri M, Czosnyka M, Chatfield DA et al. Predictive value of Glasgow Coma Scale after brain trauma: change in trend over the past ten years. Journal of neurology, neurosurgery, and psychiatry 2004; 75: 161-162
  • 5 Maas AI, Roozenbeek B, Manley GT. Clinical trials in traumatic brain injury: past experience and current developments. Neurotherapeutics 2010; 7: 115-126
  • 6 Marmarou A, Lu J, Butcher I et al. Prognostic value of the Glasgow Coma Scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: an IMPACT analysis. J Neurotrauma 2007; 24: 270-280
  • 7 Klein AM, Howell K, Vogler J et al. Rehabilitation outcome of unconscious traumatic brain injury patients. J Neurotrauma 2013; 30: 1476-1483
  • 8 Wang MC, Linnau KF, Tirschwell DL et al. Utility of repeat head computed tomography after blunt head trauma: a systematic review. J Trauma 2006; 61: 226-233
  • 9 Hiler M, Czosnyka M, Hutchinson P et al. Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J Neurosurg 2006; 104: 731-737
  • 10 Brown CV, Zada G, Salim A et al. Indications for routine repeat head computed tomography (CT) stratified by severity of traumatic brain injury. J Trauma 2007; 62: 1339-1344 discussion 44-45
  • 11 Matsukawa H, Shinoda M, Fujii M et al. Genu of corpus callosum as a prognostic factor in diffuse axonal injury. J Neurosurg 2011; 115: 1019-1024
  • 12 Chew BG, Spearman CM, Quigley MR et al. The prognostic significance of traumatic brainstem injury detected on T2-weighted MRI. J Neurosurg 2012; 117: 722-728
  • 13 Firsching R, Woischneck D, Klein S et al. Classification of severe head injury based on magnetic resonance imaging. Acta Neurochir 2001; 143: 263-271
  • 14 Marmarou A, Saad A, Aygok G et al. Contribution of raised ICP and hypotension to CPP reduction in severe brain injury: correlation to outcome. Acta Neurochir Suppl 2005; 95: 277-280
  • 15 Bratton SL, Chestnut RM, Ghajar J et al. Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and thresholds. J Neurotrauma 2007; 24 (Suppl. 01) 65-70
  • 16 Andrews PJ, Citerio G, Longhi L et al. NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med 2008; 34: 1362-1370
  • 17 Chesnut RM, Temkin N, Carney N et al. A trial of intracranial-pressure monitoring in traumatic brain injury. New Engl J Med 2012; 367: 2471-2481
  • 18 Chesnut R, Videtta W, Vespa P et al. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care 2014; 21 (Suppl. 02) 64-84
  • 19 Winter CD, Adamides A, Rosenfeld JV. The role of decompressive craniectomy in the management of traumatic brain injury: a critical review. J Clin Neurosci 2005; 12: 619-623
  • 20 Flynn LM, Rhodes J, Andrews PJ. Therapeutic hypothermia reduces intracranial pressure and partial brain oxygen tension in patients with severe traumatic brain injury: Preliminary data from the Eurotherm3235 Trial. Ther Hypothermia Temp Manag 2015; [Epub ahead of print]
  • 21 Stocchetti N, Zanaboni C, Colombo A et al. Refractory intracranial hypertension and "second-tier" therapies in traumatic brain injury. Intensive Care Med 2008; 34: 461-467
  • 22 Li M, Chen T, Chen SD et al. Comparison of equimolar doses of mannitol and hypertonic saline for the treatment of elevated intracranial pressure after traumatic brain injury: a systematic review and meta-analysis. Medicine (Baltimore) 2015; 94: e736
  • 23 Wakai A, McCabe A, Roberts I et al. Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev 2013; 8: CD001049
  • 24 Cooper DJ, Rosenfeld JV, Murray L et al. Decompressive craniectomy in diffuse traumatic brain injury. New Engl J Med 2011; 364: 1493-1502
  • 25 Sahuquillo J, Martinez-Ricarte F, Poca MA. Decompressive craniectomy in traumatic brain injury after the DECRA trial. Where do we stand?. Curr Opin Crit Care 2013; 19: 101-106
  • 26 Bullock MR, Chesnut R, Ghajar J et al. Surgical management of acute subdural hematomas. Neurosurgery 2006; 58: 16-24 discussion Si-iv
  • 27 Crossley S, Reid J, McLatchie R et al. A systematic review of therapeutic hypothermia for adult patients following traumatic brain injury. Crit Care 2014; 18: R75
  • 28 Ling GS, Neal CJ. Maintaining cerebral perfusion pressure is a worthy clinical goal. Neurocrit Care 2005; 2: 75-81
  • 29 Balestreri M, Czosnyka M, Hutchinson P et al. Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury. Neurocrit Care 2006; 4: 8-13
  • 30 Dias C, Silva MJ, Pereira E et al. Optimal cerebral perfusion pressure management at bedside: a single-center pilot study. Neurocrit Care 2015; 23: 92-102
  • 31 Steiner LA, Czosnyka M, Piechnik SK et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 2002; 30: 733-738
  • 32 Nangunoori R, Maloney-Wilensky E, Stiefel M et al. Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: a systematic literature review. Neurocrit Care 2012; 17: 131-138
  • 33 Meixensberger J, Jaeger M, Vath A et al. Brain tissue oxygen guided treatment supplementing ICP/CPP therapy after traumatic brain injury. J Neurol Neurosurg Psychiat 2003; 74: 760-764
  • 34 Stiefel MF, Udoetuk JD, Spiotta AM et al. Conventional neurocritical care and cerebral oxygenation after traumatic brain injury. J Neurosurg 2006; 105: 568-575
  • 35 Citerio G, Oddo M, Taccone FS. Recommendations for the use of multimodal monitoring in the neurointensive care unit. Curr Opin Crit Care 2015; 21: 113-119
  • 36 Varsos GV, Kasprowicz M, Smielewski P et al. Model-based indices describing cerebrovascular dynamics. Neurocrit Care 2014; 20: 142-157
  • 37 Claassen J, Taccone FS, Horn P et al. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med 2013; 39: 1337-1351
  • 38 Hinzman JM, Andaluz N, Shutter LA et al. Inverse neurovascular coupling to cortical spreading depolarizations in severe brain trauma. Brain 2014; 137: 2960-2972
  • 39 Schmidt B, Reinhard M, Lezaic V et al. Autoregulation monitoring and outcome prediction in neurocritical care patients: Does one index fit all?. J Clin Monit Comput 2015; [Epub ahead of print]
  • 40 Jaeger M, Schuhmann MU, Soehle M et al. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 2006; 34: 1783-1788
  • 41 Longhi L, Pagan F, Valeriani V et al. Monitoring brain tissue oxygen tension in brain-injured patients reveals hypoxic episodes in normal-appearing and in peri-focal tissue. Intensive Care Med 2007; 33: 2136-2142
  • 42 Le Roux P, Menon DK, Citerio G et al. The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: evidentiary tables: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care 2014; 21 (Suppl. 02) 297-361
  • 43 Chase A. Traumatic brain injury: Spreading depolarization can cause secondary injury after TBI. Nature Rev Neurol 2014; 10: 547
  • 44 Hartings JA, Strong AJ, Fabricius M et al. Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma 2009; 26: 1857-1866
  • 45 Donnelly J, Czosnyka M, Sudhan N et al. Increased blood glucose is related to disturbed cerebrovascular pressure reactivity after traumatic brain injury. Neurocrit Care 2015; 22: 20-25
  • 46 Wright DW, Kellermann AL, Hertzberg VS et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med 2007; 49: 391-402
  • 47 Skolnick BE, Maas AI, Narayan RK et al. for the SYNAPSE Trial Investigators. A Clinical Trial of Progesterone for Severe Traumatic Brain Injury. N Engl J Med 2014; 371: 2467-2476
  • 48 Stocchetti N, Taccone FS, Citerio G et al. Neuroprotection in acute brain injury: an up-to-date review. Crit Care 2015; 19: 186