Aktuelle Dermatologie 2015; 41(11): 478-488
DOI: 10.1055/s-0041-105784
Fort- und Weiterbildung
© Georg Thieme Verlag KG Stuttgart · New York

Moderne Bildgebung in der Dermatologie

Modern Imaging Techniques in Dermatology
J. Welzel
Klinik für Dermatologie und Allergologie, Klinikum Augsburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
10. November 2015 (online)

Lernziele

  • Kenntnis der neuen bildgebenden und anderen physikalischen diagnostischen Methoden

  • Indikationen für einen Einsatz bildgebender Methoden

  • Limitationen der Techniken

  • Ablauf und Aufwand der Messungen

  • Kenntnis der wichtigsten diagnostischen Merkmale von Hauttumoren

 
  • Literatur

  • 1 Kreusch J, Rassner G. Auflichtmikroskopie pigmentierter Hauttumoren. Ein Bildatlas. Stuttgart: Thieme; 1991
  • 2 Stolz W, Braun-Falco O, Bilek P. Farbatlas der Dermatoskopie. 3. Aufl. Stuttgart: Thieme; 2004
  • 3 Blum A, Hofmann-Wellenhof R, Marghoob AA et al. Recurrent melanocytic nevi and melanomas in dermoscopy: results of a multicenter study of the International Dermoscopy Society. JAMA Dermatol 2014; 150: 1-11
  • 4 Kreusch J, Koch F. Auflichtmikroskopische Charakterisierung von Gefäßmustern in Hauttumoren. Hautarzt 1996; 47: 264-272
  • 5 Lallas A, Zalaudek I, Argenziano G et al. Dermoscopy in general dermatology. Dermatol Clin 2013; 31: 679-694
  • 6 Blum A, Schmid-Wendtner MH, Mauss-Kiefer V et al. Ultrasound mapping of lymph node and subcutaneous metastases in patients with cutaneous melanoma: results of a prospective multicenter study. Dermatology 2006; 212: 47-52
  • 7 Voit C, Van Akkooi AC, Schäfer-Hesterberg G et al. Ultrasound morphology criteria predict metastatic disease of the sentinel nodes in patients with melanoma. J Clin Oncol 2010; 28: 847-852
  • 8 Schmid-Wendtner MH, Dill-Müller D, Baumert J et al. Lymph node metastases in patients with cutaneous melanoma: improvements in diagnosis by signal-enhanced color Doppler sonography. Melanoma Res 2004; 50: 679-682
  • 9 Hoffmann K, Happe M, Schüller S et al. Ranking of 20 MHz sonography of malignant melanoma and pigmented lesions in routine diagnosis. Ultraschall Med 1999; 20: 104-109
  • 10 Welzel J, Lankenau E, Birngruber R et al. Optical coherence tomography of the human skin. J Am Acad Dermatol 1997; 37: 958-963
  • 11 Mogensen M, Morsy HA, Thrane L et al. Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology 2008; 217: 14-20
  • 12 Maier T, Braun-Falco M, Laubender RP et al. Actinic keratosis in the en-face and slice imaging mode of high-definition optical coherence tomography and comparison with histology. Br J Dermatol 2012; 168: 120-128
  • 13 Maier T, Braun-Falco M, Hinz T et al. Morphology of basal cell carcinoma in high definition optical coherence tomography: en-face and slice imaging mode, and comparison with histology. J Eur Acad Dermatol Venereol 2012; 27: e97-104
  • 14 Ulrich M, Maier T, Kurzen H et al. Multicentre study evaluating the sensitivity and specificity of optical coherence tomography for the diagnosis of basal cell carcinoma. Br J Dermatol 2014; 171: 8
  • 15 Alawi SA, Kuck M, Wahrlich C et al. Optical coherence tomography for presurgical margin assessment of non-melanoma skin cancer – a practical approach. Exp Dermatol 2013; 22: 547-551
  • 16 Hinz T, Ehler LK, Hornung T et al. Preoperative characterization of basal cell carcinoma comparing tumour thickness measurement by optical coherence tomography, 20-MHz ultrasound and histopathology. Acta Derm Venereol 2011; 92: 132-137
  • 17 Themstrup L, Banzhaf CA, Mogensen M et al. Optical Coherence Tomography Imaging of Non-melanoma Skin Cancer Undergoing Photodynamic Therapy Reveals Subclinical Residual Lesions. Photodiagnosis Photodyn Ther 2014; 11: 7-12
  • 18 Banzhaf CA, Themstrup L, Ring HC et al. Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy. Skin Res Technol 2014; 20: 170-176
  • 19 Gambichler T, Schmid-Wendtner MH, Plura I et al. A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi. J Eur Acad Dermatol Venereol 2015; 29: 537-541
  • 20 De Carvalho N, Ciardo S, Cesinaro AM et al. In vivo micro-angiography by means of speckle-variance optical coherence tomography (SV-OCT) is able to detect microscopic vascular changes in nevus to melanoma transition. JEADV 2015; [in press]
  • 21 Rajadhyaksha M, Grossman M, Esterowitz D et al. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol 1995; 104: 946-952
  • 22 Pellacani G, Guitera P, Longo C et al. The impact of in vivo reflectance confocal microscope for imaging human tissue microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions. J Invest Dermatol 2007; 127: 2759-2765
  • 23 Ulrich M, Maltusch A, Rius-Diaz F et al. Clinical Applicability of in vivo Reflectance Confocal Microscopy for the Diagnosis of Actinic Keratoses. J Dermatol Surg 2008; 34: 610-619
  • 24 Nori S, Rius-Dıaz F, Cuevas J et al. Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study. J Am Acad Dermatol 2004; 51: 923-930
  • 25 Rothmund G, Sattler EC, Kaestle R et al. Confocal laser scanning microscopy as a new valuable tool in the diagnosis of onychomycosis – comparison of six diagnostic methods. Mycosis 2013; 56: 47-55
  • 26 Sattler EC, Maier T, Hoffmann VS et al. Noninvasive in vivo detection and quantification of Demodex mites by confocal laser scanning microscopy. Br J Dermatol 2012; 167: 1042-1047
  • 27 Gareau DS, Karen JK, Dusza SW et al. Sensitivity and specificity for detecting basal cell carcinomas in Mohs excisions with confocal fluorescence mosaicing microscopy. J Biomed Opt 2009; 14: 034012 DOI: 10.1117/1.3130331.
  • 28 Kaatz M, König K. Multiphotonenmikroskopie und In-vivo-Multiphotonentomographie in der dermatologischen Bildgebung. Hautarzt 2010; 61: 397-409
  • 29 Monheit G, Cognetta AB, Ferris L et al. The performance of MelaFind: a prospective multicenter study. Arch Dermatol 2011; 147: 188-194
  • 30 Malvehy J, Hauschild A, Curiel-Lewandrowski C et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety. Br J Dermatol 2014; 171: 1099-1107
  • 31 Leupold D, Scholz M, Stankovic G et al. The stepwise two-photon excited melanin fluorescence is a unique diagnostic tool for the detection of malignant transformation in melanocytes. Pigment Cell Melanoma Res 2011; 24: 438-445