Flugmedizin · Tropenmedizin · Reisemedizin - FTR 2015; 22(06): 282-287
DOI: 10.1055/s-0041-106843
Flugmedizin
© Georg Thieme Verlag Stuttgart · New York

Künstliche Schwerkraft – Herausforderung für die Luft- und Raumfahrtmedizin – Historische Aspekte und aktuelle Forschung

Artificial gravity as a challenge for aerospace medicine
Carla Ledderhos
1   Dezernat I 3b Experimentelle Flugmedizinische Forschung, Zentrum für Luft- und Raumfahrtmedizin der Luftwaffe, Fürstenfeldbruck (Leiter: OTA PD Dr. Frank Weber)
› Author Affiliations
Further Information

Publication History

Publication Date:
15 December 2015 (online)

Preview

Zum Gegenstand flugmedizinischer Betrachtungen wurden Beschleunigungen im 1. Weltkrieg. Für die Untersuchung der damit verbundenen Fragestellungen hat die Flugmedizin Humanzentrifugen benutzt, die im Zuge des technischen Fortschritts schrittweise an das Leistungsvermögen der Luftfahrzeuge der jeweiligen Epoche herangeführt wurden. In der Forschung standen hier zunehmend Fragestellungen der Entwicklung und Evaluation von Flugausrüstungen, Fliegersonderbekleidung und Schutzausrüstungen im Vordergrund.

In der Raumfahrtmedizin dagegen galt es zunächst, die Astronauten auf die erhöhten Schwerkraftbedingungen beim Start zu Weltraummissionen vorzubereiten. Mehr und mehr aber wurden die Auswirkungen verringerter Schwerkraftbedingungen auf den menschlichen Organismus untersucht, um nach Möglichkeiten zu suchen, die Dekonditionierung, die mit einer verlängerten Schwerelosigkeit verbunden ist, zu reduzieren oder zu eliminieren. Die Frage der Entwicklung sogenannter Countermeasures ist hier insbesondere für die geplanten Langzeitflüge zum Mars hoch aktuell.

Gravity is present everywhere on the planet Earth. During the course of evolution, the various life forms have become almost perfectly adapted to the force of gravity. Human beings are the only species that have managed to leave the confines of their own planet. As a result, they were forced to deal with the effects that changing gravity conditions have on living organisms.

The complex process of acquiring knowledge in this area was closely linked to technological advances in the areas of land and air transport. However, there was considerable knowledge about the effects of acceleration on the human body even before humans began to extend their capabilities with the help of technology. This knowledge dates back to the time when medical practitioners used acceleration as a therapy for sleep disorders, cardiovascular diseases and even mental illness. Physicians in particular therefore knew about the effects of acceleration on the heart rate, blood volume distribution and breathing long before they became a problem and a challenge in the area of aviation medicine and later also space medicine.

Accelerations became an obvious issue in aviation medicine during World War I. To investigate reactions caused by accelerations aviation medicine started to use human centrifuges which were gradually improved to match the performance of aircraft of the respective era as technology advanced. Researchers increasingly began to focus on the development and evaluation of flight equipment, specialised flight garments and other protective gear.

The initial challenge for space medicine was to prepare astronauts for the increased gravitational forces that occur during the launching phase of space missions. However, the focus subsequently shifted to the effects of low gravity conditions on the human body. The objective was to find ways to reduce or eliminate the deconditioning effect and other undesirable effects that extended periods of zero gravity have on various organ systems. The development of countermeasures in this respect is an area of research that remains highly relevant in view of the current plans to launch a long-distance flight to Mars.