Rofo 2016; 188(04): 359-364
DOI: 10.1055/s-0041-109513
Review
© Georg Thieme Verlag KG Stuttgart · New York

Pediatric Oncologic Imaging: A Key Application of Combined PET/MRI

PET/MRT in der pädiatrischen Onkologie: Ein Hauptanwendungsgebiet
S. Gatidis
,
C. la Fougère
,
J. F. Schaefer
Further Information

Publication History

29 April 2015

16 October 2015

Publication Date:
22 March 2016 (online)

Abstract

Pediatric imaging has been identified as a key application of combined whole-body PET/MRI. First studies have revealed the clinical feasibility and possible advantages of PET/MRI over PET/CT and MRI. Besides a significant reduction in radiation exposure of about 50 – 75 %, combined whole-body PET/MRI offers the diagnostic advantage of the multiparametric characterization of pathophysiologic processes and helps reduce the number of necessary imaging studies. However, very few studies focusing on pediatric PET/MRI have been published to date. Additional studies are necessary in order to fully appreciate the clinical impact of this novel method. This review article shall summarize the existing literature concerning pediatric PET/MRI and give insight into the practical experience derived from over 160 pediatric PET/MRI examinations that were performed in Tübingen.

Key Points:

• Combined PET/MR is a promising imaging modality in pediatric oncology.

• Using combined PET/MRI, diagnostic radiation exposure of pediatric patients and the number of necessary imaging studies can be reduced.

• Further clinical studies are necessary in order to define specific indications for combined PET/MRI in pediatric radiology.

Citation Format:

• Gatidis S, la Fougère C, Schaefer J F Pediatric Oncologic Imaging: A Key Application of Combined PET/MRI. Fortschr Röntgenstr 2016; 188: 359 – 364

Zusammenfassung

Die pädiatrische Bildgebung stellt ein Hauptanwendungsgebiet der kombinierten PET/MRT dar. In ersten Studien konnten die klinische Durchführbarkeit und mögliche Vorteile der PET/MRT im Vergleich zur PET/CT und MRT dargelegt werden. Neben einer deutlichen Reduktion der Strahlenexposition um etwa 50 – 75 % bietet die kombinierte PET/MRT einen diagnostischen Gewinn durch multiparametrische Charakterisierung pathophysiologischer Prozesse und ermöglicht eine Verringerung der notwendigen bildgebenden Untersuchungen. Nur wenige Studien zur pädiatrischen PET/MRT wurden bisher veröffentlicht. Weitere Studien sind notwendig, um die klinische Bedeutung dieser neuen Methode abschätzen zu können. Dieser Artikel soll die existierende Literatur zur pädiatrischen PET/MRT zusammenfassen und einen Einblick in praktische Erfahrungen aus mehr als 160 durchgeführten pädiatrischen PET-/MRT-Untersuchungen in Tübingen geben.

Kernaussagen:

• Die kombinierte PET/MRT ist in besonderem Maße für die Anwendung in der pädiatrischen Onkologie geeignet.

• Durch den Einsatz der kombinierten PET/MRT kann die Strahlenexposition pädiatrischer Patienten gesenkt und die Anzahl notwendiger Untersuchungen reduziert werden.

• Gezielte klinische Studien sind notwendig, um spezifische Anwendungsgebiete der kombinierten PET/MRT in der Kinderradiologie genauer zu definieren.

 
  • References

  • 1 Delso G, Furst S, Jakoby B et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 2011; 52: 1914-1922
  • 2 Bisdas S, Ritz R, Bender B et al. Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol 2013; 48: 295-301
  • 3 Hartenbach M, Hartenbach S, Bechtloff W et al. Combined PET/MRI improves diagnostic accuracy in patients with prostate cancer: a prospective diagnostic trial. Clin Cancer Res 2014; 20: 3244-3253
  • 4 Ohno Y, Koyama H, Yoshikawa T et al. Three-way Comparison of Whole-Body MR, Coregistered Whole-Body FDG PET/MR, and Integrated Whole-Body FDG PET/CT Imaging: TNM and Stage Assessment Capability for Non-Small Cell Lung Cancer Patients. Radiology 2015; 275: 849-861
  • 5 Bailey DL, Antoch G, Bartenstein P et al. Combined PET/MR: The Real Work Has Just Started. Summary Report of the Third International Workshop on PET/MR Imaging; February 17–21, 2014, Tubingen, Germany. Mol Imaging Biol 2015; 17: 297-312
  • 6 Hirsch FW, Sattler B, Sorge I et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 2013; 43: 860-875
  • 7 Schafer JF, Gatidis S, Schmidt H et al. Simultaneous Whole-Body PET/MR Imaging in Comparison to PET/CT in Pediatric Oncology: Initial Results. Radiology 2014; 273: 220-231
  • 8 Gatidis S, Schmidt H, Guckel B et al. Comprehensive Oncologic Imaging in Infants and Preschool Children With Substantially Reduced Radiation Exposure Using Combined Simultaneous 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Imaging. Invest Radiol 2015; Aug 24 [Epub ahead of print]
  • 9 Zaidi H, Ojha N, Morich M et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol 2011; 56: 3091-3106
  • 10 Iagaru A, Mittra E, Minamimoto R et al. Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality. Clin Nucl Med 2015; 40: 1-8
  • 11 Parysow O, Mollerach AM, Jager V et al. Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin Nucl Med 2007; 32: 351-357
  • 12 Stauss J, Franzius C, Pfluger T et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 2008; 35: 1581-1588
  • 13 von Schulthess GK, Veit-Haibach P. Workflow Considerations in PET/MR Imaging. J Nucl Med 2014; 55: 19S-24S
  • 14 Martinez-Moller A, Eiber M, Nekolla SG et al. Workflow and scan protocol considerations for integrated whole-body PET/MRI in oncology. J Nucl Med 2012; 53: 1415-1426
  • 15 Bezrukov I, Mantlik F, Schmidt H et al. MR-Based PET attenuation correction for PET/MR imaging. Semin Nucl Med 2013; 43: 45-59
  • 16 Schaefer JF, Kramer U. Whole-body MRI in children and juveniles. Fortschr Röntgenstr 2011; 183: 24-36
  • 17 Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics 2009; 29: 1467-1486
  • 18 Wiesmuller M, Quick HH, Navalpakkam B et al. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging 2013; 40: 12-21
  • 19 Brendle C, Schmidt H, Oergel A et al. Segmentation-based attenuation correction in positron emission tomography/magnetic resonance: erroneous tissue identification and its impact on positron emission tomography interpretation. Invest Radiol 2015; 50: 339-346
  • 20 Purz S, Sabri O, Viehweger A et al. Potential Pediatric Applications of PET/MR. J Nucl Med 2014; 55: 32S-39S
  • 21 Al-Nabhani KZ, Syed R, Michopoulou S et al. Qualitative and quantitative comparison of PET/CT and PET/MR imaging in clinical practice. J Nucl Med 2014; 55: 88-94
  • 22 Barrington SF, Begent J, Lynch T et al. Guidelines for the use of PET-CT in children. Nucl Med Commun 2008; 29: 418-424
  • 23 Franzius C, Stauss J, Pfluger T et al. Procedure guidelines for whole-body 18F-FDG PET and PET/CT in children with malignant diseases. Nuklearmedizin 2010; 49: 225-233
  • 24 Uslu L, Donig J, Link M et al. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 2015; 56: 274-286
  • 25 Kluge R, Korholz D. Role of FDG-PET in Staging and Therapy of Children with Hodgkin Lymphoma. Klin Padiatr 2011; 223: 315-319
  • 26 Zhang H, Huang R, Cheung NK et al. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res 2014; 20: 2182-2191
  • 27 Vavere AL, Butch ER, Dearling JL et al. 64Cu-p-NH2-Bn-DOTA-hu14.18K322A, a PET radiotracer targeting neuroblastoma and melanoma. J Nucl Med 2012; 53: 1772-1778
  • 28 Ruf J, Heuck F, Schiefer J et al. Impact of Multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology 2010; 91: 101-109
  • 29 Gulyas B, Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. Q J Nucl Med Mol Imaging 2012; 56: 173-190
  • 30 Kwee TC, Takahara T, Vermoolen MA et al. Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr Radiol 2010; 40: 1592-1602
  • 31 Goo HW, Choi SH, Ghim T et al. Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol 2005; 35: 766-773
  • 32 Krohmer S, Sorge I, Krausse A et al. Whole-body MRI for primary evaluation of malignant disease in children. Eur J Radiol 2010; 74: 256-261
  • 33 Pfluger T, Melzer HI, Mueller WP et al. Diagnostic value of combined (1)(8)F-FDG PET/MRI for staging and restaging in paediatric oncology. Eur J Nucl Med Mol Imaging 2012; 39: 1745-1755
  • 34 Mayerhoefer ME, Karanikas G, Kletter K et al. Evaluation of diffusion-weighted MRI for pretherapeutic assessment and staging of lymphoma: results of a prospective study in 140 patients. Clin Cancer Res 2014; 20: 2984-2993
  • 35 Aisen AM, Martel W, Braunstein EM et al. MRI and CT evaluation of primary bone and soft-tissue tumors. Am J Roentgenol 1986; 146: 749-756
  • 36 Zimmer WD, Berquist TH, McLeod RA et al. Magnetic resonance imaging of osteosarcomas. Comparison with computed tomography. Clin Orthop Relat Res 1986; 289-299
  • 37 Wilder RT, Flick RP, Sprung J et al. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 2009; 110: 796-804
  • 38 Brendle CB, Schmidt H, Fleischer S et al. Simultaneously acquired MR/PET images compared with sequential MR/PET and PET/CT: alignment quality. Radiology 2013; 268: 190-199
  • 39 Wurslin C, Schmidt H, Martirosian P et al. Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med 2013; 54: 464-471
  • 40 Miglioretti DL, Johnson E, Williams A et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 2013; 167: 700-707
  • 41 Pearce MS, Salotti JA, Little MP et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380: 499-505
  • 42 Robison LL, Green DM, Hudson M et al. Long-term outcomes of adult survivors of childhood cancer. Cancer 2005; 104: 2557-2564
  • 43 Chawla SC, Federman N, Zhang D et al. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 2010; 40: 681-686
  • 44 Oehmigen M, Ziegler S, Jakoby BW et al. Radiotracer Dose Reduction in Integrated PET/MR: Implications from National Electrical Manufacturers Association Phantom Studies. J Nucl Med 2014; 55: 1361-1367
  • 45 Schwenzer NF, Schraml C, Muller M et al. Pulmonary lesion assessment: comparison of whole-body hybrid MR/PET and PET/CT imaging--pilot study. Radiology 2012; 264: 551-558
  • 46 Rauscher I, Eiber M, Furst S et al. PET/MR imaging in the detection and characterization of pulmonary lesions: technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med 2014; 55: 724-729
  • 47 Catalano OA, Rosen BR, Sahani DV et al. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients--a hypothesis-generating exploratory study. Radiology 2013; 269: 857-869