Anästhesiol Intensivmed Notfallmed Schmerzther 2016; 51(09): 574-581
DOI: 10.1055/s-0041-109828
Fachwissen: Topthema
Anästhesiologie / Intensivmedizin
© Georg Thieme Verlag Stuttgart · New York

Organersatzverfahren - Lungenersatzverfahren

Respiratory and extracorporeal lung support
Christopher Lotz
1   Klinik und Poliklinik für Anästhesiologie, Universitätsklinikum Würzburg
,
Norbert Roewer
1   Klinik und Poliklinik für Anästhesiologie, Universitätsklinikum Würzburg
,
Ralf M Muellenbach
1   Klinik und Poliklinik für Anästhesiologie, Universitätsklinikum Würzburg
› Author Affiliations
Further Information

Publication History

Publication Date:
15 September 2016 (online)

Zusammenfassung

Die lungenprotektive Beatmung gilt als Standardtherapie zur Sicherstellung des Gasaustauschs bei Patienten im akuten Lungenversagen. Eine Replikation der physiologischen Atmung und Herstellung eines optimalen Ventilations-/Perfusionsverhältnisses ist aufgrund einer passiven Zwerchfellbewegung mit der Präferenz nicht-abhängiger Lungenabschnitte jedoch nicht möglich. Zugleich besteht die Gefahr einer iatrogenen Schädigung der Lungen durch die mechanische Beatmung, der sog. „ventilatorassoziierten oder -induzierten Lungenschädigung“ (VILI). Ist die Sicherstellung eines suffizienten Gasaustauschs trotz invasiver mechanischer Beatmung nicht mehr möglich bzw. nur unter Inkaufnahme sehr hoher Tidalvolumina oder Beatmungsdrücke, sollte an den Einsatz eines extrakorporalen Lungenersatzverfahren gedacht werden. Die veno-venöse extrakorporale Membranoxygenierung (vvECMO) erlaubt eine nahezu vollständige Übernahme der Lungenfunktion und scheint bei gleichzeitiger Behandlung in einem ARDS-Zentrum das Outcome von Patienten mit schwerem ARDS zu verbessern.

Abstract

Mechanical ventilation is the most commonly used form of respiratory support to restore or maintain adequate gas exchange. However, mechanical ventilation does not provide a physiological form of breathing. Neither does it provide an optimal ventilation / perfusion ratio due to passive movement of the diagphragm favoring the non-dependent parts of the lung. Furthermore, patients are in danger of ventilator-associated/induced lung injury (VALI/VILI). Hence, lung protective ventilation is mandatory in patients with an acute respiratory distress syndrome (ARDS) and should likewise be used in the operating room. Extracorporeal pulmonary support is required in case mechanical ventilation is unable to secure sufficient gas exchange or VILI is imminent. Venovenous extracorporeal membrane oxygenation (vvECMO) acts as lung replacement therapy and may improve survival along with treatment in an ARDS-center.

Kernaussagen

  • Ein akutes Lungenversagen (acute respiratory distress syndrome, ARDS) ist mit einer hohen Letalität vergesellschaftet, wobei sich das klinische Bild im Median 2 Tage nach Erstvorstellung im Krankenhaus entwickelt. Aktuelle Forschungsbemühungen zielen daher zunehmend auf die Prävention des ARDS ab.

  • Beim schweren ARDS ist die frühzeitige Verlegung in ein Zentrum zu empfehlen, um die optimale Versorgung der Patienten sicherzustellen.

  • Eine maschinelle Beatmung ist keine Replikation der physiologischen Atmung und bei kranken Lungen mit einem hohen Risiko von ventilatorassoziierten Lungenverletzungen (VILI) verbunden.

  • Eine lungenprotektive Beatmung mit einem Tidalvolumen von 6 ml/kg idealisiertem Körpergewicht, einem Plateaudruck von < 30 cmH2O sowie einem positiven endexspiratorischen Druck (PEEP) ist bei einem ARDS obligat. Sie sollte jedoch auch beim Lungengesunden angewandt werden.

  • Die veno-venöse ECMO (vvECMO) kann als Lungenersatz die Oxygenierung und Dekarboxylierung des Blutes sicherstellen. Der vvECMO-Blutfluss ist hierbei die Determinante zur Steuerung der Oxygenierung. Die Höhe des Frischgasflusses bestimmt die CO2-Elimination.

  • Komplikationen einer ECMO-Therapie umfassen mechanische sowie patientenassoziierte Faktoren. Häufigste Komplikation im Verlauf der Therapie ist eine komplexe Störung der Hämostase.

  • Absolute Kontraindikationen für einen extrakorporalen Lungenersatz existieren nicht.

 
  • Literaturverzeichnis

  • 1 Bellani G, Laffey JG, Pham T et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315: 788-800
  • 2 Herridge MS, Tansey CM, Matte A et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 2011; 364: 1293-1304
  • 3 Villar J, Blanco J, Kacmarek RM. Current incidence and outcome of the acute respiratory distress syndrome. Curr Opin Crit Care 2016; 22: 1-6
  • 4 Estenssoro E, Dubin A, Laffaire E et al. Incidence, clinical course, and outcome in 217 patients with acute respiratory distress syndrome. Crit Care Med 2002; 30: 2450-2456
  • 5 Rubenfeld GD, Caldwell E, Peabody E et al. Incidence and outcomes of acute lung injury. N Engl J Med 2005; 353: 1685-1693
  • 6 Blum JM, Stentz MJ, Dechert R et al. Preoperative and intraoperative predictors of postoperative acute respiratory distress syndrome in a general surgical population. Anesthesiology 2013; 118: 19-29
  • 7 Force ADT, Ranieri VM, Rubenfeld GD et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307: 2526-2533
  • 8 Gajic O, Dabbagh O, Park PK et al. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med 2011; 183: 462-470
  • 9 Kor DJ, Talmor DS, Banner-Goodspeed VM et al. Lung Injury Prevention with Aspirin (LIPS-A): a protocol for a multicentre randomised clinical trial in medical patients at high risk of acute lung injury. BMJ Open 2012 2 DOI: 10.1136/bmjopen-2012-001606.
  • 10 Iscimen R, Cartin-Ceba R, Yilmaz M et al. Risk factors for the development of acute lung injury in patients with septic shock: an observational cohort study. Crit Care Med 2008; 36: 1518-1522
  • 11 Spieth PM, Zhang H. Pharmacological therapies for acute respiratory distress syndrome. Curr Opin Crit Care 2014; 20: 113-121
  • 12 Festic E, Kor DJ, Gajic O. Prevention of acute respiratory distress syndrome. Curr Opin Crit Care 2015; 21: 82-90
  • 13 Martin C, Papazian L, Payan MJ et al. Pulmonary fibrosis correlates with outcome in adult respiratory distress syndrome. A study in mechanically ventilated patients Chest 1995; 107: 196-200
  • 14 Rocco PR, Dos Santos C, Pelosi P. Lung parenchyma remodeling in acute respiratory distress syndrome. Minerva Anestesiol 2009; 75: 730-740
  • 15 Zapol WM, Snider MT. Pulmonary hypertension in severe acute respiratory failure. N Engl J Med 1977; 296: 476-480
  • 16 Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013; 369: 2126-2136
  • 17 Weg JG, Anzueto A, Balk RA et al. The relation of pneumothorax and other air leaks to mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338: 341-346
  • 18 Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 1970; 28: 596-608
  • 19 Martin TR. Lung cytokines and ARDS: Roger S. Mitchell Lecture. Chest 1999; 116 (Suppl. 01) 2S-8S
  • 20 Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000; 342: 1301-1308
  • 21 Argiras EP, Blakeley CR, Dunnill MS et al. High PEEP decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 1987; 59: 1278-1285
  • 22 Amato MB, Meade MO, Slutsky AS et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372: 747-755
  • 23 Hemmes SN, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 2014; 384: 495-503
  • 24 Guay J, Ochroch EA. Intraoperative use of low volume ventilation to decrease postoperative mortality, mechanical ventilation, lengths of stay and lung injury in patients without acute lung injury. Cochrane Database Syst Rev 2015; 12 CD011151
  • 25 Serpa Neto A, Hemmes SN, Barbas CS et al Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology 2015; 123: 66-78
  • 26 Neto AS, Hemmes SN, Barbas CS et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med 2016; 4: 272-280
  • 27 Coakley RJ, Taggart C, Greene C et al. Ambient pCO2 modulates intracellular pH, intracellular oxidant generation, and interleukin-8 secretion in human neutrophils. J Leukoc Biol 2002; 71: 603-610
  • 28 Curley G, Contreras MM, Nichol AD et al. Hypercapnia and acidosis in sepsis: a double-edged sword?. Anesthesiology 2010; 112: 462-472
  • 29 Pugin J, Dunn-Siegrist I, Dufour J et al. Cyclic stretch of human lung cells induces an acidification and promotes bacterial growth. Am J Respir Cell Mol Biol 2008; 38: 362-370
  • 30 Boissier F, Katsahian S, Razazi K et al. Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome. Intensive Care Med 2013; 39: 1725-1733
  • 31 Lheritier G, Legras A, Caille A et al. Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med 2013; 39: 1734-1742
  • 32 Mekontso Dessap A, Boissier F, Charron C et al Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 2016; 42: 862-870
  • 33 Nyren S, Radell P, Lindahl SG et al. Lung ventilation and perfusion in prone and supine postures with reference to anesthetized and mechanically ventilated healthy volunteers. Anesthesiology 2010; 112: 682-687
  • 34 Gattinoni L, Tognoni G, Pesenti A et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001; 345: 568-573
  • 35 Henderson WR, Griesdale DE, Dominelli P, Ronco JJ. Does prone positioning improve oxygenation and reduce mortality in patients with acute respiratory distress syndrome?. Can Respir J 2014; 21: 213-215
  • 36 Guerin C, Reignier J, Richard JC et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368: 2159-2168
  • 37 Bloomfield R, Noble DW, Sudlow A. Prone position for acute respiratory failure in adults. Cochrane Database Syst Rev 2015; 11 CD008095
  • 38 Alhazzani W, Alshahrani M, Jaeschke R et al Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care 2013; 17: R43
  • 39 Forel JM, Roch A, Marin V et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med 2006; 34: 2749-2757
  • 40 Gainnier M, Roch A, Forel JM et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med 2004; 32: 113-119
  • 41 Papazian L, Forel JM, Gacouin A et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363: 1107-1116
  • 42 Yoshida T, Torsani V, Gomes S et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 2013; 188: 1420-1427
  • 43 Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med 2013; 41: 536-545
  • 44 Guldner A, Pelosi P, Gama de Abreu M. Spontaneous breathing in mild and moderate versus severe acute respiratory distress syndrome. Curr Opin Crit Care 2014; 20: 69-76
  • 45 Putensen C, Zech S, Wrigge H et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001; 164: 43-49
  • 46 Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 1999; 159: 1241-1248
  • 47 Yoshida T, Rinka H, Kaji A et al. The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation. Anesth Analg 2009; 109: 1892-1900
  • 48 Cereda M, Foti G, Marcora B et al. Pressure support ventilation in patients with acute lung injury. Crit Care Med 2000; 28: 1269-1275
  • 49 Rehder KJ, Turner DA, Bonadonna D et al. Technological advances in extracorporeal membrane oxygenation for respiratory failure. Expert Rev Respir Med 2012; 6: 377-384
  • 50 Lamy M, Eberhart RC, Fallat RJ et al. Effects of extracorporeal membrane oxygenation (ECMO) on pulmonary hemodynamics, gas exchange and prognose. Trans Am Soc Artif Intern Organs 1975; 21: 188-198
  • 51 Michalot G, Girardet P, Grimbert F, Guidicelli H, Peyrin JC, Naud G. 24-hour extracorporeal membrane oxygenation in the hypoxic dog: hemodynamics and pulmonary gas exchange. Eur Surg Res 1979; 11: 399-408
  • 52 Muellenbach RM, Belohlavek J, Lorusso R, Lotz C, Muller T. Monitoring of oxygen supply and demand during veno-venous extracorporeal membrane oxygenation. Intensive Care Med 2015; 41: 1733
  • 53 Peek GJ, Mugford M, Tiruvoipati R et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009; 374: 1351-1363
  • 54 Bein T, Graf B, Weber-Carstens S. Ventilatory support versus ECMO for severe adult respiratory failure. Lancet 2010; 375: 549-550 author reply 551
  • 55 Wallace DJ, Milbrandt EB, Boujoukos A. Ave, CESAR, morituri te salutant! (Hail, CESAR, those who are about to die salute you!). Crit Care 2010; 14: 308
  • 56 Retamal J, Libuy J, Jimenez M et al. Preliminary study of ventilation with 4 ml/kg tidal volume in acute respiratory distress syndrome: feasibility and effects on cyclic recruitment – derecruitment and hyperinflation. Crit Care 2013; 17: R16
  • 57 Schmidt M, Pellegrino V, Combes A, Scheinkestel C, Cooper DJ, Hodgson C. Mechanical ventilation during extracorporeal membrane oxygenation. Crit Care 2014; 18: 203
  • 58 Kredel M, Bierbaum D, Lotz C, Kuestermann J, Roewer N, Muellenbach RM. Ventilation during extracorporeal membrane oxygenation for adult respiratory distress syndrome. Crit Care 2014; 18: 442
  • 59 Allen SM, Fujii M, Stannett V, Hopfenberg HB, Williams JL. The barrier properties of polyacrylonitrile. J Membr Sci 1977; 2: 153-163
  • 60 Bandorski D, Gehron J, Hecker M. Anlage einer Doppellumenkanüle zur extrakorporalen veno-venösen Membranoxygenierung (ECMO). Dtsch Med Wochenschr 2014; 139: 792-794
  • 61 Del Sorbo L, Pisani L, Filippini C et al Extracorporeal Co2 removal in hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control. Crit Care Med 2015; 43: 120-127
  • 62 Kluge S, Braune SA, Engel M et al. Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med 2012; 38: 1632-1639
  • 63 Burki NK, Mani RK, Herth FJ et al. A novel extracorporeal CO(2) removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest 2013; 143: 678-686
  • 64 Abrams DC, Brenner K, Burkart KM et al. Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease. Ann Am Thorac Soc 2013; 10: 307-314
  • 65 Morimont P, Batchinsky A, Lambermont B. Update on the role of extracorporeal CO(2) removal as an adjunct to mechanical ventilation in ARDS. Crit Care 2015; 19: 117
  • 66 Morimont P, Guiot J, Desaive T et al. Veno-venous extracorporeal CO2 removal improves pulmonary hemodynamics in a porcine ARDS model. Acta Anaesthesiol Scand 2015; 59: 448-456
  • 67 Bein T, Weber-Carstens S, Goldmann A, Muller T, Staudinger T, Brederlau J et al Lower tidal volume strategy (approximately 3 ml/kg) combined with extracorporeal CO2 removal versus ‚conventional‘ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 2013; 39: 847-856
  • 68 Paden ML, Conrad SA, Rycus PT, Thiagarajan RR, Registry E. Extracorporeal life Support Organization Registry Report 2012. ASAIO J 2013; 59: 202-210
  • 69 Aubron C, Cheng AC, Pilcher D et al. Factors associated with outcomes of patients on extracorporeal membrane oxygenation support: a 5-year cohort study. Crit Care 2013; 17: R73
  • 70 Oliver WC. Anticoagulation and coagulation management for ECMO. Semin Cardiothorac Vasc Anesth 2009; 13: 154-175
  • 71 Heilmann C, Geisen U, Beyersdorf F et al. Acquired von Willebrand syndrome in patients with extracorporeal life support (ECLS). Intensive Care Med 2012; 38: 62-68
  • 72 Tauber H, Ott H, Streif W et al. Extracorporeal membrane oxygenation induces short-term loss of high-molecular-weight von Willebrand factor multimers. Anesth Analg 2015; 120: 730-736
  • 73 Extracorporeal Life Support Organization (ELSO). Guidelines for Cardiopulmonary Extracorporeal Life Support. Version 1.3 11/2013;
  • 74 Beiderlinden M, Treschan T, Gorlinger K, Peters J. Argatroban in extracorporeal membrane oxygenation. Artif Organs 2007; 31: 461-465
  • 75 Phillips MR, Khoury AI, Ashton RF, Cairns BA, Charles AG. The dosing and monitoring of argatroban for heparin-induced thrombocytopenia during extracorporeal membrane oxygenation: a word of caution. Anaesth Intensive Care 2014; 42: 97-98
  • 76 Abrams D, Bacchetta M, Brodie D. Recirculation in venovenous extracorporeal membrane oxygenation. ASAIO J 2015; 61: 115-121
  • 77 Bonacchi M, Harmelin G, Peris A, Sani G. A novel strategy to improve systemic oxygenation in venovenous extracorporeal membrane oxygenation: the „chi-configuration“. J Thorac Cardiovasc Surg 2011; 142: 1197-1204
  • 78 Rich PB, Awad SS, Crotti S, Hirschl RB, Bartlett RH, Schreiner RJ. A prospective comparison of atrio-femoral and femoro-atrial flow in adult venovenous extracorporeal life support. J Thorac Cardiovasc Surg 1998; 116: 628-632
  • 79 Marhong JD, Telesnicki T, Munshi L, Del Sorbo L, Detsky M, Fan E. Mechanical ventilation during extracorporeal membrane oxygenation. An international survey. Ann Am Thorac Soc 2014; 11: 956-961
  • 80 Mols G, Loop T, Hermle G et al. Zehn Jahre Erfahrung mit extra-korporaler Membranoxygenierung (ECMO). Anasthesiol Intensivmed Notfallmed Schmerzther 2001; 36: 4-14
  • 81 Lappa A, Donfrancesco S, Contento C et al. Weaning from venovenous extracorporeal membrane oxygenation without anticoagulation: is it possible?. Ann Thorac Surg 2012; 94: e1-3