Facial Plast Surg 2021; 37(02): 267-273
DOI: 10.1055/s-0041-1722980
Original Article

Role of Photo-Biomodulation Therapy in Facial Rejuvenation and Facial Plastic Surgery

Jose A. De Cordova
1   Department of ENT, Head and Neck Surgery, Jersey General Hospital, Jersey, United Kingdom
2   VIDA Health & Aesthetics, Jersey, United Kingdom
› Institutsangaben

Abstract

Photo-biomodulation (PBM) also known as low-level laser therapy is a rising technology with multiple potential uses in medicine and recently in the cosmetic field for the treatment of skin conditions and skin rejuvenation. Due to its wound healing and anti-inflammatory properties, there is an increase in popularity in its use as adjunctive treatment before and after surgical procedures in the face and neck.



Publikationsverlauf

Artikel online veröffentlicht:
15. Februar 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Barolet D. Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg 2008; 27 (04) 227-238
  • 2 Calderhead RG. The photobiological basics behind light-emitting diode (LED) phototherapy. Laser Ther 2007; 16: 97-108
  • 3 Calderhead RG. Low level light therapy with light emitting diodes. Consulting Room 2020; 3 (03) 13-15
  • 4 Campbell PD, Miller AM, Woesner ME. Bright light therapy: seasonal affective disorder and beyond. Einstein J Biol Med 2017; 32: E13-E25
  • 5 Whelan HT, Smits Jr RL, Buchman EV. et al. Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 2001; 19 (06) 305-314
  • 6 Whelan HT, Buchmann EV, Whelan NT. et al. NASA light emitting diode medical applications: from deep space to deep sea. Published version. Reproduced from AIP Proceedings, Vol. 552, No. 1 (2001): 35–45, with the permission of AIP Publishing. © 2001 AIP Publishing
  • 7 Avci P, Gupta A, Sadasivam M. et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 2013; 32 (01) 41-52
  • 8 Wong-Riley MT, Liang HL, Eells JT. et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 2005; 280 (06) 4761-4771
  • 9 Pastore D, Greco M, Petragallo VA, Passarella S. Increase in <--H+/e- ratio of the cytochrome c oxidase reaction in mitochondria irradiated with helium-neon laser. Biochem Mol Biol Int 1994; 34 (04) 817-826
  • 10 Karu T, Pyatibrat L, Kalendo G. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 1995; 27 (03) 219-223
  • 11 Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 2005; 23 (04) 355-361
  • 12 Liu H, Colavitti R, Rovira II, Finkel T. Redox-dependent transcriptional regulation. Circ Res 2005; 97 (10) 967-974
  • 13 Karu TI, Pyatibrat LV, Kalendo GS. Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem Photobiol Sci 2004; 3 (02) 211-216
  • 14 Oron U. Light therapy and stem cells: a therapeutic intervention of the future?. J Interv Cardiol 2011; 3: 627-629
  • 15 Kalka K, Merk H, Mukhtar H. Photodynamic therapy in dermatology. J Am Acad Dermatol 2000; 42 (03) 389-413 , quiz 414–416
  • 16 Wilson BC, Patterson MS. The physics of photodynamic therapy. Phys Med Biol 1986; 31 (04) 327-360
  • 17 Wunsch A, Matuschka K. A controlled trial to determine the efficacy of red and near-infrared light treatment in patient satisfaction, reduction of fine lines, wrinkles, skin roughness, and intradermal collagen density increase. Photomed Laser Surg 2014; 32 (02) 93-100
  • 18 Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 2012; 40 (02) 516-533
  • 19 Nanni CA, Alster TS. Complications of carbon dioxide laser resurfacing. An evaluation of 500 patients. Dermatol Surg 1998; 24 (03) 315-320
  • 20 Sriprachya-Anunt S, Fitzpatrick RE, Goldman MP, Smith SR. Infections complicating pulsed carbon dioxide laser resurfacing for photoaged facial skin. Dermatol Surg 1997; 23 (07) 527-535 , discussion 535–536
  • 21 Sachdev M, Hameed S, Mysore V. Nonablative lasers and nonlaser systems in dermatology: current status. Indian J Dermatol Venereol Leprol 2011; 77 (03) 380-388
  • 22 Hardaway CA, Ross EV. Nonablative laser skin remodeling. Dermatol Clin 2002; 20 (01) 97-111 , ix
  • 23 Dierickx CC, Anderson RR. Visible light treatment of photoaging. Dermatol Ther 2005; 18 (03) 191-208
  • 24 Barolet D, Roberge CJ, Auger FA, Boucher A, Germain L. Regulation of skin collagen metabolism in vitro using a pulsed 660 nm LED light source: clinical correlation with a single-blinded study. J Invest Dermatol 2009; 129 (12) 2751-2759
  • 25 Weiss RA, McDaniel DH, Geronemus RG, Weiss MA. Clinical trial of a novel non-thermal LED array for reversal of photoaging: clinical, histologic, and surface profilometric results. Lasers Surg Med 2005; 36 (02) 85-91
  • 26 Weiss RA, McDaniel DH, Geronemus RG. et al. Clinical experience with light-emitting diode (LED) photomodulation. Dermatol Surg 2005; 31 (9 Pt 2): 1199-1205
  • 27 McDaniel DH, Weiss RA, Geronemus R. et al. Light-tissue interactions I: photothermolysis vs photomodulation laboratory findings. Lasers Surg Med 2002; 14: 25
  • 28 Barolet D, Boucher A, Bjerring P. In vivo human dermal collagen production following LED-based therapy: the importance of treatment parameters. Lasers Surg Med 2005; 17: 76
  • 29 Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 1996; 23 (05) 492-496
  • 30 Lim W, Lee S, Kim I. et al. The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 2007; 39 (07) 614-621
  • 31 Khoury JG, Goldman MP. Use of light-emitting diode photomodulation to reduce erythema and discomfort after intense pulsed light treatment of photodamage. J Cosmet Dermatol 2008; 7 (01) 30-34
  • 32 DeLand MM, Weiss RA, McDaniel DH, Geronemus RG. Treatment of radiation-induced dermatitis with light-emitting diode (LED) photomodulation. Lasers Surg Med 2007; 39 (02) 164-168
  • 33 Uitto J. IL-6 signaling pathway in keloids: a target for pharmacologic intervention?. J Invest Dermatol 2007; 127 (01) 6-8
  • 34 Ghazizadeh M, Tosa M, Shimizu H, Hyakusoku H, Kawanami O. Functional implications of the IL-6 signaling pathway in keloid pathogenesis. J Invest Dermatol 2007; 127 (01) 98-105
  • 35 Lee SY, Park KH, Choi JW. et al. A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. J Photochem Photobiol B 2007; 88 (01) 51-67
  • 36 Barolet D, Boucher A. LED therapy for the prevention of post-surgical hypertrophic scars and keloids. Lasers Surg Med 2008; 20: 97
  • 37 Lee SY, You CE, Park MY. Blue and red light combination LED phototherapy for acne vulgaris in patients with skin phototype IV. Lasers Surg Med 2007; 39 (02) 180-188
  • 38 Rotunda AM, Bhupathy AR, Rohrer TE. The new age of acne therapy: light, lasers, and radiofrequency. J Cosmet Laser Ther 2004; 6 (04) 191-200
  • 39 Ross EV. Optical treatments for acne. Dermatol Ther 2005; 18 (03) 253-266
  • 40 Sadick NS. Handheld LED array device in the treatment of acne vulgaris. J Drugs Dermatol 2008; 7 (04) 347-350
  • 41 Goldberg DJ, Russell BA. Combination blue (415 nm) and red (633 nm) LED phototherapy in the treatment of mild to severe acne vulgaris. J Cosmet Laser Ther 2006; 8 (02) 71-75
  • 42 Yu HS, Wu CS, Yu CL, Kao YH, Chiou MH. Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo. J Invest Dermatol 2003; 120 (01) 56-64
  • 43 Lee AY. Role of keratinocytes in the development of vitiligo. Ann Dermatol 2012; 24 (02) 115-125
  • 44 Lan CC, Wu CS, Chiou MH, Hsieh PC, Yu HS. Low-energy helium-neon laser induces locomotion of the immature melanoblasts and promotes melanogenesis of the more differentiated melanoblasts: recapitulation of vitiligo repigmentation in vitro. J Invest Dermatol 2006; 126 (09) 2119-2126
  • 45 Mandel' ASh, Dunaeva LP. Effect of laser therapy on blood levels of serotonin and dopamine scleroderma patients. Vestn Dermatol Venerol 1982; (08) 13-17
  • 46 Mandel AS, Haberman HF, Pawlowski D, Goldstein E. Non PUVA nonsurgical therapies for vitiligo. Clin Dermatol 1997; 15 (06) 907-919
  • 47 Lan CC, Wu CS, Chiou MH, Chiang TY, Yu HS. Low-energy helium-neon laser induces melanocyte proliferation via interaction with type IV collagen: visible light as a therapeutic option for vitiligo. Br J Dermatol 2009; 161 (02) 273-280
  • 48 Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy—an update. Dose Response 2011; 9 (04) 602-618
  • 49 Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response 2009; 7 (04) 358-383
  • 50 Kim JM, Kim N-H, Tian YS, Lee A-Y. Light-emitting diodes at 830 and 850 nm inhibit melanin synthesis in vitro. Acta Derm Venereol 2012; 92 (06) 675-680
  • 51 Barolet D, Boucher A. LED photoprevention: reduced MED response following multiple LED exposures. Lasers Surg Med 2008; 40 (02) 106-112
  • 52 Frank S, Oliver L, Lebreton-De Coster C. et al. Infrared radiation affects the mitochondrial pathway of apoptosis in human fibroblasts. J Invest Dermatol 2004; 123 (05) 823-831
  • 53 Applegate LA, Scaletta C, Panizzon R, Frenk E, Hohlfeld P, Schwarzkopf S. Induction of the putative protective protein ferritin by infrared radiation: implications in skin repair. Int J Mol Med 2000; 5 (03) 247-251