Semin Thromb Hemost 2021; 47(03): 261-273
DOI: 10.1055/s-0041-1724118
Review Article

Heparan Sulfate Proteoglycans in Diabetes

Linda M. Hiebert
1   Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
› Author Affiliations

Abstract

Diabetes is a complex disorder responsible for the mortality and morbidity of millions of individuals worldwide. Although many approaches have been used to understand and treat diabetes, the role of proteoglycans, in particular heparan sulfate proteoglycans (HSPGs), has only recently received attention. The HSPGs are heterogeneous, highly negatively charged, and are found in all cells primarily attached to the plasma membrane or present in the extracellular matrix (ECM). HSPGs are involved in development, cell migration, signal transduction, hemostasis, inflammation, and antiviral activity, and regulate cytokines, chemokines, growth factors, and enzymes. Hyperglycemia, accompanying diabetes, increases reactive oxygen species and upregulates the enzyme heparanase that degrades HSPGs or affects the synthesis of the HSPGs altering their structure. The modified HSPGs in the endothelium and ECM in the blood vessel wall contribute to the nephropathy, cardiovascular disease, and retinopathy seen in diabetes. Besides the blood vessel, other cells and tissues in the heart, kidney, and eye are affected by diabetes. Although not well understood, the adipose tissue, intestine, and brain also reveal HSPG changes associated with diabetes. Further, HSPGs are significantly involved in protecting the β cells of the pancreas from autoimmune destruction and could be a focus of prevention of type I diabetes. In some circumstances, HSPGs may contribute to the pathology of the disease. Understanding the role of HSPGs and how they are modified by diabetes may lead to new treatments as well as preventative measures to reduce the morbidity and mortality associated with this complex condition.



Publication History

Article published online:
01 April 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lindahl U, Kjellén L. Pathophysiology of heparan sulphate: many diseases, few drugs. J Intern Med 2013; 273 (06) 555-571
  • 2 Rivara S, Milazzo FM, Giannini G. Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 2016; 8 (06) 647-680
  • 3 Shriver Z, Capila I, Venkataraman G, Sasisekharan R. Heparin and heparan sulfate: analyzing structure and microheterogeneity. Handb Exp Pharmacol 2012; 207: 159-176
  • 4 Parish CR, Freeman C, Ziolkowski AF. et al. Unexpected new roles for heparanase in type 1 diabetes and immune gene regulation. Matrix Biol 2013; 32 (05) 228-233
  • 5 Gallagher J. Fell-Muir lecture: heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra. Int J Exp Pathol 2015; 96 (04) 203-231
  • 6 Gondelaud F, Ricard-Blum S. Structures and interactions of syndecans. FEBS J 2019; 286 (15) 2994-3007
  • 7 Weber S, Saftig P. Ectodomain shedding and ADAMs in development. Development 2012; 139 (20) 3693-3709
  • 8 Traister A, Shi W, Filmus J. Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem J 2008; 410 (03) 503-511
  • 9 Kolluri A, Ho M. The role of glypican-3 in regulating Wnt, YAP, and Hedgehog in liver cancer. Front Oncol 2019; 9: 708
  • 10 Ebong EE, Lopez-Quintero SV, Rizzo V, Spray DC, Tarbell JM. Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr Biol 2014; 6 (03) 338-347
  • 11 Okamoto K, Honda K, Doi K. et al. Glypican-5 increases susceptibility to nephrotic damage in diabetic kidney. Am J Pathol 2015; 185 (07) 1889-1898
  • 12 Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2014; 34: 64-79
  • 13 Martinez JR, Dhawan A, Farach-Carson MC. Modular proteoglycan perlecan/HSPG2: Mutations, phenotypes, and functions. Genes (Basel) 2018; 9 (11) 1-14
  • 14 Whitelock JM, Melrose J, Iozzo RV. Diverse cell signaling events modulated by perlecan. Biochemistry 2008; 47 (43) 11174-11183
  • 15 Heljasvaara R, Aikio M, Ruotsalainen H, Pihlajaniemi T. Collagen XVIII in tissue homeostasis and dysregulation - lessons learned from model organisms and human patients. Matrix Biol 2017; 57–58: 55-75
  • 16 Daniels MP. The role of agrin in synaptic development, plasticity and signaling in the central nervous system. Neurochem Int 2012; 61 (06) 848-853
  • 17 Miner JH. The glomerular basement membrane. Exp Cell Res 2012; 318 (09) 973-978
  • 18 Haimov-Kochman R, Friedmann Y, Prus D. et al. Localization of heparanase in normal and pathological human placenta. Mol Hum Reprod 2002; 8 (06) 566-573
  • 19 Kosir MA, Foley-Loudon PA, Finkenauer R, Tennenberg SD. Multiple heparanases are expressed in polymorphonuclear cells. J Surg Res 2002; 103 (01) 100-108
  • 20 Sotnikov I, Hershkoviz R, Grabovsky V. et al. Enzymatically quiescent heparanase augments T cell interactions with VCAM-1 and extracellular matrix components under versatile dynamic contexts. J Immunol 2004; 172 (09) 5185-5193
  • 21 Vlodavsky I, Eldor A, Haimovitz-Friedman A. et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 1992; 12 (02) 112-127
  • 22 Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999; 5 (07) 803-809
  • 23 Vlodavsky I, Friedmann Y, Elkin M. et al. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 1999; 5 (07) 793-802
  • 24 McKenzie E, Tyson K, Stamps A. et al. Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 2000; 276 (03) 1170-1177
  • 25 Gingis-Velitski S, Zetser A, Kaplan V. et al. Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J Biol Chem 2004; 279 (42) 44084-44092
  • 26 Ilan N, Elkin M, Vlodavsky I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 2006; 38 (12) 2018-2039
  • 27 Gutter-Kapon L, Alishekevitz D, Shaked Y. et al. Heparanase is required for activation and function of macrophages. Proc Natl Acad Sci U S A 2016; 113 (48) E7808-E7817
  • 28 Bame KJ. Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans. Glycobiology 2001; 11 (06) 91R-98R
  • 29 Vlodavsky I, Blich M, Li JP, Sanderson RD, Ilan N. Involvement of heparanase in atherosclerosis and other vessel wall pathologies. Matrix Biol 2013; 32 (05) 241-251
  • 30 Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2012; 2 (01) a006429
  • 31 Henry CB, Duling BR. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol 1999; 277 (02) H508-H514
  • 32 Haraldsson B, Jeansson M. Glomerular filtration barrier. Curr Opin Nephrol Hypertens 2009; 18 (04) 331-335
  • 33 Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454 (03) 345-359
  • 34 Bashandy GM. Implications of recent accumulating knowledge about endothelial glycocalyx on anesthetic management. J Anesth 2015; 29 (02) 269-278
  • 35 Kolálová H, AmbrRzová B, Švihálková-Šindlerová L, Klinke A, Kubala L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm 2014; 2014 (05) 1-17
  • 36 Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 2003; 93 (10) e136-e142
  • 37 Dogné S, Flamion B, Caron N. Endothelial glycocalyx as a shield against diabetic vascular complications: involvement of hyaluronan and hyaluronidases. Arterioscler Thromb Vasc Biol 2018; 38 (07) 1427-1439
  • 38 Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 2003; 23 (09) 1541-1547
  • 39 Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg 2011; 254 (02) 194-200
  • 40 Condomitti G, de Wit J. Heparan sulfate proteoglycans as emerging players in synaptic specificity. Front Mol Neurosci 2018; 11: 14
  • 41 Rawshani A, Rawshani A, Franzén S. et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2018; 379 (07) 633-644
  • 42 Schmidt AM. Diabetes mellitus and cardiovascular disease: emerging therapeutic approaches. Arterioscler Thromb Vasc Biol 2019; 39 (04) 558-568
  • 43 Nishinaka T, Mori S, Yamazaki Y. et al. A comparative study of sulphated polysaccharide effects on advanced glycation end-product uptake and scavenger receptor class A level in macrophages. Diabetes Vasc Dis Res 2020; 17 (01) 1479164119896975
  • 44 Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006; 114 (06) 597-605
  • 45 Han J, Mandal AK, Hiebert LM. Endothelial cell injury by high glucose and heparanase is prevented by insulin, heparin and basic fibroblast growth factor. Cardiovasc Diabetol 2005; 4 (12) 12
  • 46 Maxhimer JB, Somenek M, Rao G. et al. Heparanase-1 gene expression and regulation by high glucose in renal epithelial cells: a potential role in the pathogenesis of proteinuria in diabetic patients. Diabetes 2005; 54 (07) 2172-2178
  • 47 Han J, Woytowich AE, Mandal AK, Hiebert LM. Heparanase upregulation in high glucose-treated endothelial cells is prevented by insulin and heparin. Exp Biol Med (Maywood) 2007; 232 (07) 927-934
  • 48 Wang F, Kim MS, Puthanveetil P. et al. Endothelial heparanase secretion after acute hypoinsulinemia is regulated by glucose and fatty acid. Am J Physiol Heart Circ Physiol 2009; 296 (04) H1108-H1116
  • 49 Wang F, Wang Y, Kim MS. et al. Glucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization. Cardiovasc Res 2010; 87 (01) 127-136
  • 50 Han J, Zhang F, Xie J, Linhardt RJ, Hiebert LM. Changes in cultured endothelial cell glycosaminoglycans under hyperglycemic conditions and the effect of insulin and heparin. Cardiovasc Diabetol 2009; 8 (46) 46
  • 51 Fitzgerald ML, Wang Z, Park PW, Murphy G, Bernfield M. Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol 2000; 148 (04) 811-824
  • 52 Annecke T, Fischer J, Hartmann H. et al. Shedding of the coronary endothelial glycocalyx: effects of hypoxia/reoxygenation vs ischaemia/reperfusion. Br J Anaesth 2011; 107 (05) 679-686
  • 53 Qin Q, Niu J, Wang Z, Xu W, Qiao Z, Gu Y. Heparanase induced by advanced glycation end products (AGEs) promotes macrophage migration involving RAGE and PI3K/AKT pathway. Cardiovasc Diabetol 2013; 12 (37) 37
  • 54 An XF, Zhou L, Jiang PJ. et al. Advanced glycation end-products induce heparanase expression in endothelial cells by the receptor for advanced glycation end products and through activation of the FOXO4 transcription factor. Mol Cell Biochem 2011; 354 (1–2): 47-55
  • 55 Baker AB, Chatzizisis YS, Beigel R. et al. Regulation of heparanase expression in coronary artery disease in diabetic, hyperlipidemic swine. Atherosclerosis 2010; 213 (02) 436-442
  • 56 Gil N, Goldberg R, Neuman T. et al. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 2012; 61 (01) 208-216
  • 57 Reine TM, Kusche-Gullberg M, Feta A, Jenssen T, Kolset SO. Heparan sulfate expression is affected by inflammatory stimuli in primary human endothelial cells. Glycoconj J 2012; 29 (01) 67-76
  • 58 Levy-Adam F, Abboud-Jarrous G, Guerrini M, Beccati D, Vlodavsky I, Ilan N. Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. J Biol Chem 2005; 280 (21) 20457-20466
  • 59 Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15 (04) 6184-6223
  • 60 Stocker R, Keaney Jr JF. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004; 84 (04) 1381-1478
  • 61 Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11 (02) 98-107
  • 62 Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008; 44 (12) 1973-2001
  • 63 Kanwar YS, Veis A, Kimura JH, Jakubowski ML. Characterization of heparan sulfate-proteoglycan of glomerular basement membranes. Proc Natl Acad Sci U S A 1984; 81 (03) 762-766
  • 64 Parthasarathy N, Gotow LF, Bottoms JD. et al. Influence of glucose on production and N-sulfation of heparan sulfate in cultured adipocyte cells. Mol Cell Biochem 2000; 213 (1–2): 1-9
  • 65 Groffen AJ, Ruegg MA, Dijkman H. et al. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J Histochem Cytochem 1998; 46 (01) 19-27
  • 66 Morita H, Yoshimura A, Inui K. et al. Heparan sulfate of perlecan is involved in glomerular filtration. J Am Soc Nephrol 2005; 16 (06) 1703-1710
  • 67 Harvey SJ, Jarad G, Cunningham J. et al. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am J Pathol 2007; 171 (01) 139-152
  • 68 Galvis-Ramírez MF, Quintana-Castillo JC, Bueno-Sanchez JC. Novel Insights into the role of glycans in the pathophysiology of glomerular endotheliosis in preeclampsia. Front Physiol 2018; 9: 1470
  • 69 Jeansson M, Haraldsson B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am J Physiol Renal Physiol 2006; 290 (01) F111-F116
  • 70 Kanwar YS, Wada J, Sun L. et al. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood) 2008; 233 (01) 4-11
  • 71 Celie JW, Reijmers RM, Slot EM. et al. Tubulointerstitial heparan sulfate proteoglycan changes in human renal diseases correlate with leukocyte influx and proteinuria. Am J Physiol Renal Physiol 2008; 294 (01) F253-F263
  • 72 Masola V, Zaza G, Onisto M, Lupo A, Gambaro G. Impact of heparanase on renal fibrosis. J Transl Med 2015; 13: 181
  • 73 Lepedda AJ, De Muro P, Capobianco G, Formato M. Significance of urinary glycosaminoglycans/proteoglycans in the evaluation of type 1 and type 2 diabetes complications. J Diabetes Complications 2017; 31 (01) 149-155
  • 74 Tamsma JT, van den Born J, Bruijn JA. et al. Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane. Diabetologia 1994; 37 (03) 313-320
  • 75 van den Born J, van den Heuvel LP, Bakker MA, Veerkamp JH, Assmann KJ, Berden JH. A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int 1992; 41 (01) 115-123
  • 76 Lee EY, Kim SH, Whang SK, Hwang KY, Yang JO, Hong SY. Isolation, identification, and quantitation of urinary glycosaminoglycans. Am J Nephrol 2003; 23 (03) 152-157
  • 77 Zhao T, Lu X, Davies NM. et al. Diabetes results in structural alteration of chondroitin sulfate in the urine. J Pharm Pharm Sci 2013; 16 (03) 486-493
  • 78 Joladarashi D, Salimath PV, Chilkunda ND. Diabetes results in structural alteration of chondroitin sulfate/dermatan sulfate in the rat kidney: effects on the binding to extracellular matrix components. Glycobiology 2011; 21 (07) 960-972
  • 79 van den Hoven MJ, Rops AL, Bakker MA. et al. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int 2006; 70 (12) 2100-2108
  • 80 Wijnhoven TJ, van den Hoven MJ, Ding H. et al. Heparanase induces a differential loss of heparan sulphate domains in overt diabetic nephropathy. Diabetologia 2008; 51 (02) 372-382
  • 81 Rops AL, van den Hoven MJ, Veldman BA. et al. Urinary heparanase activity in patients with type 1 and type 2 diabetes. Nephrol Dial Transplant 2012; 27 (07) 2853-2861
  • 82 Shafat I, Ilan N, Zoabi S, Vlodavsky I, Nakhoul F. Heparanase levels are elevated in the urine and plasma of type 2 diabetes patients and associate with blood glucose levels. PLoS One 2011; 6 (02) e17312
  • 83 Shafat I, Agbaria A, Boaz M. et al. Elevated urine heparanase levels are associated with proteinuria and decreased renal allograft function. PLoS One 2012; 7 (09) e44076
  • 84 Raats CJ, Van Den Born J, Berden JHM. Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int 2000; 57 (02) 385-400
  • 85 Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 1989; 32 (04) 219-226
  • 86 Okamoto K, Tokunaga K, Doi K. et al. Common variation in GPC5 is associated with acquired nephrotic syndrome. Nat Genet 2011; 43 (05) 459-463
  • 87 Tonolo G, Cherchi S. Tubulointerstitial disease in diabetic nephropathy. Int J Nephrol Renovasc Dis 2014; 7: 107-115
  • 88 Masola V, Gambaro G, Tibaldi E. et al. Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. J Biol Chem 2012; 287 (02) 1478-1488
  • 89 Zhou M, Liu J, Hao Y. et al; CCC-ACS Investigators. Prevalence and in-hospital outcomes of diabetes among patients with acute coronary syndrome in China: findings from the Improving Care for Cardiovascular Disease in China-Acute Coronary Syndrome Project. Cardiovasc Diabetol 2018; 17 (01) 147
  • 90 O'Brien KD, Ferguson M, Gordon D, Deeb SS, Chait A. Lipoprotein lipase is produced by cardiac myocytes rather than interstitial cells in human myocardium. Arterioscler Thromb 1994; 14 (09) 1445-1451
  • 91 Wang Y, Chiu AP, Neumaier K. et al. Endothelial cell heparanase taken up by cardiomyocytes regulates lipoprotein lipase transfer to the coronary lumen after diabetes. Diabetes 2014; 63 (08) 2643-2655
  • 92 Young SG, Davies BS, Voss CV. et al. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J Lipid Res 2011; 52 (11) 1869-1884
  • 93 Pulinilkunnil T, Qi D, Ghosh S. et al. Circulating triglyceride lipolysis facilitates lipoprotein lipase translocation from cardiomyocyte to myocardial endothelial lining. Cardiovasc Res 2003; 59 (03) 788-797
  • 94 Wang Y, Zhang D, Chiu AP. et al. Endothelial heparanase regulates heart metabolism by stimulating lipoprotein lipase secretion from cardiomyocytes. Arterioscler Thromb Vasc Biol 2013; 33 (05) 894-902
  • 95 Chiu AP, Bierende D, Lal N. et al. Dual effects of hyperglycemia on endothelial cells and cardiomyocytes to enhance coronary LPL activity. Am J Physiol Heart Circ Physiol 2018; 314 (01) H82-H94
  • 96 Zhang D, Wan A, Chiu AP. et al. Hyperglycemia-induced secretion of endothelial heparanase stimulates a vascular endothelial growth factor autocrine network in cardiomyocytes that promotes recruitment of lipoprotein lipase. Arterioscler Thromb Vasc Biol 2013; 33 (12) 2830-2838
  • 97 Wasty F, Alavi MZ, Moore S. Distribution of glycosaminoglycans in the intima of human aortas: changes in atherosclerosis and diabetes mellitus. Diabetologia 1993; 36 (04) 316-322
  • 98 Brown DM, Klein DJ, Michael AF, Oegema TR. 35S-glycosaminoglycan and 35S-glycopeptide metabolism by diabetic glomeruli and aorta. Diabetes 1982; 31 (5, Pt 1): 418-425
  • 99 Vlodavsky I, Iozzo RV, Sanderson RD. Heparanase: multiple functions in inflammation, diabetes and atherosclerosis. Matrix Biol 2013; 32 (05) 220-222
  • 100 Blich M, Golan A, Arvatz G. et al. Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arterioscler Thromb Vasc Biol 2013; 33 (02) e56-e65
  • 101 Osterholm C, Folkersen L, Lengquist M. et al. Increased expression of heparanase in symptomatic carotid atherosclerosis. Atherosclerosis 2013; 226 (01) 67-73
  • 102 Aldi S, Eriksson L, Kronqvist M. et al. Dual roles of heparanase in human carotid plaque calcification. Atherosclerosis 2019; 283: 127-136
  • 103 Nadir Y, Brenner B, Fux L, Shafat I, Attias J, Vlodavsky I. Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII. Haematologica 2010; 95 (11) 1927-1934
  • 104 Kunjathoor VV, Chiu DS, O'Brien KD, LeBoeuf RC. Accumulation of biglycan and perlecan, but not versican, in lesions of murine models of atherosclerosis. Arterioscler Thromb Vasc Biol 2002; 22 (03) 462-468
  • 105 Xu YX, Ashline D, Liu L. et al. The glycosylation-dependent interaction of perlecan core protein with LDL: implications for atherosclerosis. J Lipid Res 2015; 56 (02) 266-276
  • 106 Tran-Lundmark K, Tran PK, Paulsson-Berne G. et al. Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ Res 2008; 103 (01) 43-52
  • 107 Vogl-Willis CA, Edwards IJ. High-glucose-induced structural changes in the heparan sulfate proteoglycan, perlecan, of cultured human aortic endothelial cells. Biochim Biophys Acta 2004; 1672 (01) 36-45
  • 108 Vogl-Willis CA, Edwards IJ. High glucose-induced alterations in subendothelial matrix perlecan leads to increased monocyte binding. Arterioscler Thromb Vasc Biol 2004; 24 (05) 858-863
  • 109 Xie J, Li R, Wu H. et al. Advanced glycation endproducts impair endothelial progenitor cell migration and homing via syndecan 4 shedding. Stem Cells 2017; 35 (02) 522-531
  • 110 Zeng BJ, Mortimer BC, Martins IJ, Seydel U, Redgrave TG. Chylomicron remnant uptake is regulated by the expression and function of heparan sulfate proteoglycan in hepatocytes. J Lipid Res 1998; 39 (04) 845-860
  • 111 Stanford KI, Bishop JR, Foley EM. et al. Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J Clin Invest 2009; 119 (11) 3236-3245
  • 112 Wang JB, Zhang YJ, Zhang Y. et al. Negative correlation between serum syndecan-1 and apolipoprotein A1 in patients with type 2 diabetes mellitus. Acta Diabetol 2013; 50 (02) 111-115
  • 113 Park PJ, Shukla D. Role of heparan sulfate in ocular diseases. Exp Eye Res 2013; 110: 1-9
  • 114 Simó R, Hernández C. Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy. Diabetologia 2008; 51 (09) 1574-1580
  • 115 Clark SJ, Keenan TDL, Fielder HL. et al. Mapping the differential distribution of glycosaminoglycans in the adult human retina, choroid, and sclera. Invest Ophthalmol Vis Sci 2011; 52 (09) 6511-6521
  • 116 Tiwari V, Clement C, Xu D. et al. Role for 3-O-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. J Virol 2006; 80 (18) 8970-8980
  • 117 Coulson-Thomas VJ, Chang SH, Yeh LK. et al. Loss of corneal epithelial heparan sulfate leads to corneal degeneration and impaired wound healing. Invest Ophthalmol Vis Sci 2015; 56 (05) 3004-3014
  • 118 Nishiguchi KM, Ushida H, Tomida D, Kachi S, Kondo M, Terasaki H. Age-dependent alteration of intraocular soluble heparan sulfate levels and its implications for proliferative diabetic retinopathy. Mol Vis 2013; 19: 1125-1131
  • 119 Bollineni JS, Alluru I, Reddi AS. Heparan sulfate proteoglycan synthesis and its expression are decreased in the retina of diabetic rats. Curr Eye Res 1997; 16 (02) 127-130
  • 120 Nishiguchi KM, Kataoka K, Kachi S, Komeima K, Terasaki H. Regulation of pathologic retinal angiogenesis in mice and inhibition of VEGF-VEGFR2 binding by soluble heparan sulfate. PLoS One 2010; 5 (10) e13493
  • 121 Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in obesity-associated metabolic dysfunction and meta-inflammation. Front Immunol 2020; 11: 769
  • 122 Angsana J, Chen J, Smith S. et al. Syndecan-1 modulates the motility and resolution responses of macrophages. Arterioscler Thromb Vasc Biol 2015; 35 (02) 332-340
  • 123 Ussar S, Bezy O, Blüher M, Kahn CR. Glypican-4 enhances insulin signaling via interaction with the insulin receptor and serves as a novel adipokine. Diabetes 2012; 61 (09) 2289-2298
  • 124 Li K, Xu X, Hu W. et al. Glypican-4 is increased in human subjects with impaired glucose tolerance and decreased in patients with newly diagnosed type 2 diabetes. Acta Diabetol 2014; 51 (06) 981-990
  • 125 Yamashita Y, Nakada S, Yoshihara T. et al. Perlecan, a heparan sulfate proteoglycan, regulates systemic metabolism with dynamic changes in adipose tissue and skeletal muscle. Sci Rep 2018; 8 (01) 7766
  • 126 Bode L, Salvestrini C, Park PW. et al. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J Clin Invest 2008; 118 (01) 229-238
  • 127 Yamamoto S, Nakase H, Matsuura M. et al. Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/β-catenin signaling. Am J Physiol Gastrointest Liver Physiol 2013; 305 (03) G241-G249
  • 128 Krishnan B, Babu S, Walker J, Walker AB, Pappachan JM. Gastrointestinal complications of diabetes mellitus. World J Diabetes 2013; 4 (03) 51-63
  • 129 Bosi E, Molteni L, Radaelli MG. et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 2006; 49 (12) 2824-2827
  • 130 Qing Q, Zhang S, Chen Y, Li R, Mao H, Chen Q. High glucose-induced intestinal epithelial barrier damage is aggravated by syndecan-1 destruction and heparanase overexpression. J Cell Mol Med 2015; 19 (06) 1366-1374
  • 131 Trout AL, Rutkai I, Biose IJ, Bix GJ. Review of alterations in perlecan-associated vascular risk factors in dementia. Int J Mol Sci 2020; 21 (02) 1-19
  • 132 Sima AA. Encephalopathies: the emerging diabetic complications. Acta Diabetol 2010; 47 (04) 279-293
  • 133 Ando Y, Okada H, Takemura G. et al. Brain-specific ultrastructure of capillary endothelial glycocalyx and its possible contribution for blood brain barrier. Sci Rep 2018; 8 (01) 1-9
  • 134 Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes mellitus and blood-brain barrier dysfunction: an overview. J Pharmacovigil 2014; 2 (02) 125
  • 135 Pahakis MY, Kosky JR, Dull RO, Tarbell JM. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 2007; 355 (01) 228-233
  • 136 Sandeep MS, Nandini CD. Brain heparan sulphate proteoglycans are altered in developing foetus when exposed to in-utero hyperglycaemia. Metab Brain Dis 2017; 32 (04) 1185-1194
  • 137 Karlsson-Lindahl L, Schmidt L, Haage D. et al. Heparanase affects food intake and regulates energy balance in mice. PLoS One 2012; 7 (03) e34313
  • 138 Irving-Rodgers HF, Ziolkowski AF, Parish CR. et al. Molecular composition of the peri-islet basement membrane in NOD mice: a barrier against destructive insulitis. Diabetologia 2008; 51 (09) 1680-1688
  • 139 Ziolkowski AF, Popp SK, Freeman C, Parish CR, Simeonovic CJ. Heparan sulfate and heparanase play key roles in mouse β cell survival and autoimmune diabetes. J Clin Invest 2012; 122 (01) 132-141
  • 140 Simeonovic CJ, Popp SK, Starrs LM. et al. Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans. PLoS One 2018; 13 (02) e0191360
  • 141 Packham DK, Wolfe R, Reutens AT. et al; Collaborative Study Group. Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J Am Soc Nephrol 2012; 23 (01) 123-130
  • 142 Li R, Xing J, Mu X. et al. Sulodexide therapy for the treatment of diabetic nephropathy, a meta-analysis and literature review. Drug Des Devel Ther 2015; 9: 6275-6283