CC BY-NC-ND 4.0 · Thorac Cardiovasc Surg 2021; 69(S 03): e32-e40
DOI: 10.1055/s-0041-1726307
Pediatric and Congenital Cardiology

A Comprehensive Functional Analysis in Patients after Atrial Switch Surgery

Andreas Hornung*
1  Department Pediatric Cardiology, Pulmonology and Intensive Care, University Children's Hospital Tuebingen, Tuebingen, Germany
,
Daniela Vollmer*
1  Department Pediatric Cardiology, Pulmonology and Intensive Care, University Children's Hospital Tuebingen, Tuebingen, Germany
,
Gesa Wiegand
1  Department Pediatric Cardiology, Pulmonology and Intensive Care, University Children's Hospital Tuebingen, Tuebingen, Germany
,
Christian Apitz
2  Department Pediatric Cardiology, University Children's Hospital Ulm, Ulm, Germany
,
Heiner Latus
3  Department Pediatric Cardiology and Congenital Heart Disease, German Heart Center, Munich, Germany
,
Michael Hofbeck
1  Department Pediatric Cardiology, Pulmonology and Intensive Care, University Children's Hospital Tuebingen, Tuebingen, Germany
,
Ludger Sieverding
1  Department Pediatric Cardiology, Pulmonology and Intensive Care, University Children's Hospital Tuebingen, Tuebingen, Germany
› Author Affiliations
Funding This study was financially supported by the Fördergemeinschaft Deutsche Kinderherzzentren, Bonn, Germany.

Abstract

Background Long-term course after atrial switch operation is determined by increasing right ventricular (RV) insufficiency. The aim of our study was to investigate subtle functional parameters by invasive measurements with conductance technique and noninvasive examinations with cardiac magnetic resonance imaging (CMR).

Methods We used invasive (pressure–volume loops under baseline conditions and dobutamine) and noninvasive techniques (CMR with feature tracking [FT] method) to evaluate RV function. All patients had cardiopulmonary exercise testing (CPET).

Results From 2011 to 2013, 16 patients aged 28.2 ± 7.3 (22–50) years after atrial switch surgery (87.5% Senning and 12.5% Mustard) were enrolled in this prospective study. All patients were in New York Heart Association (NYHA) class I to II and presented mean peak oxygen consumption of 30.1 ± 5.7 (22.7–45.5) mL/kg/min. CMR-derived end-diastolic volume was 110 ± 22 (78–156) mL/m2 and RV ejection fraction 41 ± 8% (25–52%). CMR-FT revealed lower global systolic longitudinal, radial, and circumferential strain for the systemic RV compared with the subpulmonary left ventricle. End-systolic elastance (Ees) was overall reduced (compared with data from the literature) and showed significant increase under dobutamine (0.80 ± 0.44 to 1.89 ± 0.72 mm Hg/mL, p ≤ 0.001), whereas end-diastolic elastance (Eed) was not significantly influenced (0.11 ± 0.70 to 0.13 ± 0.15 mm Hg/mL, p = 0.454). We found no relevant relationship between load-independent conductance indices and strain or CPET parameters. Conductance analysis revealed significant mechanical dyssynchrony, higher during diastole (mean 30 ± 4% baseline, 24 ± 6% dobutamine) than during systole (mean 17 ± 6% baseline, 19 ± 7% dobutamine).

Conclusions Functional assessment of a deteriorating systemic RV remains demanding. Conductance indices as well as the CMR-derived strain parameters showed overall reduced values, but a significant relationship was not present (including CPET). Our conductance analysis revealed intraventricular and predominantly diastolic RV dyssynchrony.

Equal Authorships

Both Andreas Hornung and Daniela Vollmer were involved in data collection and interpretation. Furthermore, D.V. was responsible for the study design and A.H. for writing of the manuscript.


* Both authors contributed equally to this work.


Supplementary Material



Publication History

Received: 11 May 2020

Accepted: 25 January 2021

Publication Date:
13 April 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany