CC BY 4.0 · Glob Med Genet 2021; 08(04): 135-143
DOI: 10.1055/s-0041-1728689
Review Article

DNA Profiling in Forensic Science: A Review

Jaya Lakshmi Bukyya
1   Department of Oral Medicine and Radiology, Tirumala Institute of Dental Sciences, Nizamabad, Telangana, India
,
M L. Avinash Tejasvi
2   Department of Oral Medicine and Radiology, Kamineni Institute of Dental Sciences, Narketpally, Telangana, India
,
Anulekha Avinash
3   Department of Prosthodontics, Kamineni Institute of Dental Sciences, Narketpally, Telangana, India
,
Chanchala H. P.
4   Department of Pedodontics and Preventive Dentistry, JSS Dental College, Mysore, Karnataka, India
,
Priyanka Talwade
4   Department of Pedodontics and Preventive Dentistry, JSS Dental College, Mysore, Karnataka, India
,
Mohammed Malik Afroz
5   Department of Oral Surgery and Diagnostic Sciences, Oral Medicine, College of Dentistry, Dar Al Uloom University, Riyadh, Kingdom of Saudi Arabia
,
Archana Pokala
2   Department of Oral Medicine and Radiology, Kamineni Institute of Dental Sciences, Narketpally, Telangana, India
,
Praveen Kumar Neela
6   Department of Orthodontics, Kamineni Institute of Dental Sciences, Narketpally, Telangana, India
,
T K. Shyamilee
7   Department of Oral Pathology, Private Practice, Hyderabad, Telangana, India
,
Vammi Srisha
8   Department of Oral Medicine and Radiology, Private Practice, Bangalore, Karnataka, India
› Author Affiliations

Abstract

DNA is present in most of the cells in our body, which is unique in each and every individual, and we leave a trail of it everywhere we go. This has become an advantage for forensic investigators who use DNA to draw conclusion in identification of victim and accused in crime scenes. This review described the use of genetic markers in forensic investigation and their limitations.



Publication History

Received: 20 December 2020

Accepted: 28 February 2021

Article published online:
31 May 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dumache R, Ciocan V, Muresan C, Enache A. Molecular genetics and its applications in forensic sciences. In: Shetty BS. ed. Forensic Analysis: From Death to Justice. London: Intech; 2016. : chap. 5.
  • 2 Goodwin W, Linacre A, Hadi S. An Introduction to Forensic Genetics. Chichester: John Wiley & Sons; 2011
  • 3 Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98 (03) 503-517
  • 4 Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74 (12) 5463-5467
  • 5 Kan YW, Dozy AM. Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci USA 1978; 75 (11) 5631-5635
  • 6 Wyman AR, White R. A highly polymorphic locus in human DNA. Proc Natl Acad Sci USA 1980; 77 (11) 6754-6758
  • 7 Saiki RK, Scharf S, Faloona F. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985; 230 (4732): 1350-1354
  • 8 Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA ‘fingerprints’. Nature 1985; 318 (6046): 577-579
  • 9 Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953; 171 (4356): 737-738
  • 10 International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004; 431 (7011): 931-945
  • 11 Lander ES, Linton LM, Birren B. et al; International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409 (6822): 860-921
  • 12 Venter JC, Adams MD, Myers EW. et al. The sequence of the human genome. Science 2001; 291 (5507): 1304-1351
  • 13 Kloosterman AD, Kersbergen P. Efficacy and limits of genotyping low copynumber DNA samples by multiplex PCR of STR loci. Prog Forensic Genet 2003; 9: 795-798
  • 14 Kuperus WR, Hummel KH, Roney JM. et al. Crime scene links through DNA evidence: the practical experience from Saskatchewan casework. Can Soc Forensic Sci J 2003; 36 (01) 19-28
  • 15 Graham EA, Turk EE, Rutty GN. Room temperature DNA preservation of soft tissue for rapid DNA extraction: an addition to the disaster victim identification investigators toolkit?. Forensic Sci Int Genet 2008; 2 (01) 29-34
  • 16 Lee HC, Ladd C. Preservation and collection of biological evidence. Croat Med J 2001; 42 (03) 225-228
  • 17 Lee HC, Ladd C, Scherczinger CA, Bourke MT. Forensic applications of DNA typing: part 2: collection and preservation of DNA evidence. Am J Forensic Med Pathol 1998; 19 (01) 10-18
  • 18 Rutty GN, Hopwood A, Tucker V. The effectiveness of protective clothing in the reduction of potential DNA contamination of the scene of crime. Int J Legal Med 2003; 117 (03) 170-174
  • 19 Carpi FM, Di Pietro F, Vincenzetti S, Mignini F, Napolioni V. Human DNA extraction methods: patents and applications. Recent Pat DNA Gene Seq 2011; 5 (01) 1-7
  • 20 Budelier K, Schorr J. Purification of DNA by anion-exchange chromatography. Curr Protoc Mol Biol 1998; 42 (01) 2-1
  • 21 Chockalingam PS, Jurado LA, Jarrett HW. DNA affinity chromatography. Mol Biotechnol 2001; 19 (02) 189-199
  • 22 Meselson M, Stahl FW, Vinograd J. Equilibrium sedimentation of macromolecules in density gradients. Proc Natl Acad Sci USA 1957; 43 (07) 581-588
  • 23 Cseke LJ, Kirakosyan A, Kaufman PB, Westfall MV. Eds. Handbook of Molecular and Cellular Methods in Biology and Medicine. Boca Raton, FL: CRC Press; 2011
  • 24 Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979; 7 (06) 1513-1523
  • 25 Vogelstein B, Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci USA 1979; 76 (02) 615-619
  • 26 Höss M, Pääbo S. DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Res 1993; 21 (16) 3913-3914
  • 27 Woodard DL, Howard AJ, Down JA. inventors; Becton Dickinson and Co, assignee. Process for purifying DNA on hydrated silica. United States Patents. . [Patent no.: US 5,342,931]: 1994
  • 28 Peterson EA, Sober HA. Chromatography of proteins. I. Cellulose ion-exchange adsorbents. J Am Chem Soc 1956; 78 (04) 751-755
  • 29 Doyle J. DNA protocols for plants. In: Hewitt GM, Johnston AWB, Young JPW. eds. Molecular Techniques in Taxonomy. Berlin/Heidelberg: Springer; 1991: 283-293
  • 30 Green MR, Sambrook J. Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harb Protoc 2017; 2017 (04) prot093450
  • 31 Elkins K. Forensic DNA Biology. Kidlington, England: Oxford Academic Press; 2013: 43-45
  • 32 Thomas SM, Moreno RF, Tilzer LL. DNA extraction with organic solvents in gel barrier tubes. Nucleic Acids Res 1989; 17 (13) 5411
  • 33 Evans JP, Skrzynia C, Burke W. The complexities of predictive genetic testing. BMJ 2001; 322 (7293): 1052-1056
  • 34 Hawkins T. inventor; Whitehead Institute for Biomedical Research, assignee. DNA purification and isolation using magnetic particles. United States Patents. . [Patent no.: US 5,705,628]: 1998
  • 35 Elkins K. 2013. Forensic DNA Biology. Kidlington, England: Oxford Academic Press; 43-45
  • 36 Saiyed M, Ramchand CN. Extraction of genomic DNA using magnetic nanoparticles (Fe3O4) as a solid-phase support. Am J Infect Dis 2007; 4: 225-229
  • 37 Fomovskaia G, Smith MA, Davis JC, Jones K, Fomovsky MA. inventors; WhatmanInc, assignee. FTA-coated media for use as a molecular diagnostic tool. United States patent US 6,746,841. 2004
  • 38 Shetty PJ. The evolution of DNA extraction methods. Am J Biomed Sci Res 2020; 8 (01) 39-45
  • 39 Siegel CS, Stevenson FO, Zimmer EA. Evaluation and comparison of FTA card and CTAB DNA extraction methods for non-agricultural taxa. Appl Plant Sci 2017; 5 (02) 1600109
  • 40 Hui X, Liqun X, Jiayi C. Method for rapidly extracting nucleic acid from biological sample. 2014. China
  • 41 Shi R, Panthee DR. A novel plant DNA extraction method using filter paper-based 96-well spin plate. Planta 2017; 246 (03) 579-584
  • 42 Vitoševic K, Todorovic D, Slovic Z, Zivkovic-Zaric R, Todorovic M. Forensic genetics and genotyping. Serb J Exp Clin Res 2019; 20 (02) 75-86
  • 43 Lee SB, McCord B, Buel E. Advances in forensic DNA quantification: a review. Electrophoresis 2014; 35 (21-22): 3044-3052
  • 44 Nicklas JA, Buel E. Quantification of DNA in forensic samples. Anal Bioanal Chem 2003; 376 (08) 1160-1167
  • 45 Saiki RK, Gelfand DH, Stoffel S. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239 (4839): 487-491
  • 46 Gill P. Application of low copy number DNA profiling. Croat Med J 2001; 42 (03) 229-232
  • 47 Walker FM, Hsieh K. Advances in directly amplifying nucleic acids from complex samples. Biosensors (Basel) 2019; 9 (04) 117
  • 48 Yoshida K, Yayama K, Hatanaka A, Tamaki K. Efficacy of extended kinship analyses utilizing commercial STR kit in establishing personal identification. Leg Med (Tokyo) 2011; 13 (01) 12-15
  • 49 Moretti TR, Baumstark AL, Defenbaugh DA, Keys KM, Smerick JB, Budowle B. Validation of short tandem repeats (STRs) for forensic usage: performance testing of fluorescent multiplex STR systems and analysis of authentic and simulated forensic samples. J Forensic Sci 2001; 46 (03) 647-660
  • 50 Shewale JG, Sikka SC, Schneida E, Sinha SK. DNA profiling of azoospermic semen samples from vasectomized males by using Y-PLEX 6 amplification kit. J Forensic Sci 2003; 48 (01) 127-129
  • 51 Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ. Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 1996; 12 (04) 417-420
  • 52 Butler JM, Shen Y, McCord BR. The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 2003; 48 (05) 1054-1064
  • 53 Brenner CH, Weir BS. Issues and strategies in the DNA identification of World Trade Center victims. Theor Popul Biol 2003; 63 (03) 173-178
  • 54 Marchi E. Methods developed to identify victims of the World Trade Centre disaster. Am Lab 2004; 36 (06) 30-37
  • 55 Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16 (03) 1215