CC BY-NC-ND 4.0 · Indian J Plast Surg 2021; 54(02): 106-113
DOI: 10.1055/s-0041-1729771
CME Article

The Story of the Hand

Sunil M. Thirkannad
1   Kleinert–Kutz Hand Care Center, Christine M. Kleinert Institute for Hand and Microsurgery, Louisville, Kentucky, United States
,
Rahul Patil
1   Kleinert–Kutz Hand Care Center, Christine M. Kleinert Institute for Hand and Microsurgery, Louisville, Kentucky, United States
› Author Affiliations

Abstract

This review describes the Story of the Human Hand. It traces the functional needs that led to evolution of the human hand as well as its embryological development. The various in utero stages of formation of the human hand are covered along with a description of the various molecular and genetic factors that control this process.



Publication History

Article published online:
05 July 2021

© 2021. Association of Plastic Surgeons of India. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Haeckel, Ernst. Generelle morphologie der organismen [General Morphology of the Organisms]. Berlin: G. Reimer, 1866. http://www.biodiversitylibrary.org/item/22319#page/11/mode/1up. Accessed January 26, 2021
  • 2 Oberg KC, Greer LF, Naruse T. Embryology of the upper limb: the molecular orchestration of morphogenesis. Handchir Mikrochir Plast Chir 2004; 36 (2-3) 98-107
  • 3 Ohuchi H, Nakagawa T, Itoh N, Noji S. FGF10 can induce Fgf8 expression concomitantly with En1 and R-fng expression in chick limb ectoderm, independent of its dorsoventral specification. Dev Growth Differ 1999; 41 (06) 665-673
  • 4 Boehm B, Westerberg H, Lesnicar-Pucko G. et al. The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol 2010; 8 (07) 1000420
  • 5 Rodriguez-Esteban C, Schwabe JWR, De La Peña J, Foys B, Eshelman B, Izpisúa Belmonte JC. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 1997; 386 (6623) 360-366
  • 6 Ahn K, Mishina Y, Hanks MC. Behringer RR, Crenshaw EB III. BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development 2001; 128 (22) 4449-4461
  • 7 Riddle RD, Johnson RL, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993; 75 (07) 1401-1416
  • 8 Larsen W. Human Embryology. 3rd edition. Philadelphia, PA.: Churchill Livingstone. p. 337. ISBN 978–0-443–06583–5 2001
  • 9 Dudley AT, Ros MA, Tabin CJ. A re-examination of proximodistal patterning during vertebrate limb development. Nature 2002; 418 (6897) 539-544
  • 10 Ros MA, Lyons GE, Mackem S, Fallon JF. Recombinant limbs as a model to study homeobox gene regulation during limb development. Dev Biol 1994; 166 (01) 59-72
  • 11 Sheth R, Marcon L, Bastida MF. et al. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 2012; 338 (61/13) 1476-1480
  • 12 Oberg KC, Feenstra JM, Manske PR, Tonkin MA. Developmental biology and classification of congenital anomalies of the hand and upper extremity. J Hand Surg Am 2010; 35 (12) 2066-2076
  • 13 Asahara H, Dutta S, Kao HY, Evans RM, Montminy M. Pbx-Hox heterodimers recruit coactivator-corepressor complexes in an isoform-specific manner. Mol Cell Biol 1999; 19 (12) 8219-8225
  • 14 Ng JK, Kawakami Y, Büscher D. et al. The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development 2002; 129 (22) 5161-5170
  • 15 Rodriguez-Esteban C, Tsukui T, Yonei S. Magallon J, Tamura K, Izpisua Belmonte JC. The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 1999; 398 (6730) 814-818
  • 16 Gilbert SF. Developmental Biology. 6th edition. Sunderland (MA): Sinauer Associates; 2000. Generating the Proximal-Distal Axis of the Limb. Available from: https://www.ncbi.nlm.nih.gov/books/NBK10102/
  • 17 Rubin L, Saunders Jr JW. Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction. Dev Biol 1972; 28 (01) 94-112
  • 18 Salas-Vidal E, Valencia C, Covarrubias L. Differential tissue growth and patterns of cell death in mouse limb autopod morphogenesis. Dev Dyn 2001; 220 (04) 295-306
  • 19 Schweitzer R, Chyung JH, Murtaugh LC. et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 2001; 128 (19) 3855-3866
  • 20 Brandau O, Meindl A, Fässler R, Aszódi A. A novel gene, tendin, is strongly expressed in tendons and ligaments and shows high homology with chondromodulin-I. Dev Dyn 2001; 221 (01) 72-80
  • 21 Vogel A, Rodriguez C, Warnken W, Izpisúa Belmonte JC. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature 1995; 378 (6558) 716-720
  • 22 Barham G, Clarke NM. Genetic regulation of embryological limb development with relation to congenital limb deformity in humans. J Child Orthop 2008; 2 (01) 1-9
  • 23 Moreau C, Caldarelli P, Rocancourt D. et al. Timed collinear activation of Hox genes during gastrulation controls the avian forelimb position. Curr Biol 2019; 29 (01) 35-50.e4
  • 24 Ros MA, Dahn RD, Fernandez-Teran M. et al. The chick oligozeugodactyly (ozd) mutant lacks sonic hedgehog function in the limb. Development 2003; 130 (03) 527-537
  • 25 Oberg KC. Review of the molecular development of the thumb: digit primera. Clin Orthop Relat Res 2014; 472 (04) 1101-1105
  • 26 Montavon T, Le Garrec JF, Kerszberg M, Duboule D. Modeling Hox gene regulation in digits: reverse collinearity and the molecular origin of thumbness. Genes Dev 2008; 22 (03) 346-359
  • 27 Vargas AO, Kohlsdorf T, Fallon JF, Vandenbrooks J, Wagner GP. The evolution of HoxD-11 expression in the bird wing: insights from Alligator mississippiensis. PLoS One 2008; 3 (10) e3325
  • 28 Litingtung Y, Dahn RD, Li Y, Fallon JF, Chiang C. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 2002; 418 (6901) 979-983
  • 29 Summerbell D. A quantitative analysis of the effect of excision of the AER from the chick limb-bud. J Embryol Exp Morphol 1974; 32 (03) 651-660
  • 30 Lu P, Yu Y, Perdue Y, Werb Z. The apical ectodermal ridge is a timer for generating distal limb progenitors. Development 2008; 135 (08) 1395-1405
  • 31 Summerbell D, Lewis JH. Time, place and positional value in the chick limb-bud. J Embryol Exp Morphol 1975; 33 (03) 621-643
  • 32 Mariani FV, Ahn CP, Martin GR. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 2008; 453 (7193) 401-405
  • 33 Sun X, Mariani FV, Martin GR. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 2002; 418 (6897) 501-508
  • 34 Tabin C, Wolpert L. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev 2007; 21 (12) 1433-1442
  • 35 Towers M, Mahood R, Yin Y, Tickle C. Integration of growth and specification in chick wing digit-patterning. Nature 2008; 452 (7189) 882-886
  • 36 Zhu J, Nakamura E, Nguyen MT, Bao X, Akiyama H, Mackem S. Uncoupling Sonic hedgehog control of pattern and expansion of the developing limb bud. Dev Cell 2008; 14 (04) 624-632
  • 37 Weatherbee SD, Behringer RR, Rasweiler JJ IV, Niswander LA. Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci U S A 2006; 103 (41) 15103-15107
  • 38 Laufer E, Pizette S, Zou H, Orozco OE, Niswander L. BMP expression in duck interdigital webbing: a reanalysis. Science 1997; 278 (5336) 305
  • 39 McDowell LM, Frazier BA, Studelska DR. et al. Inhibition or activation of Apert syndrome FGFR2 (S252W) signaling by specific glycosaminoglycans. J Biol Chem 2006; 281 (11) 6924-6930
  • 40 Radhakrishna U, Blouin JL, Mehenni H. et al. Mapping one form of autosomal dominant postaxial polydactyly type A to chromosome 7p15-q11.23 by linkage analysis. Am J Hum Genet 1997; 60 (03) 597-604
  • 41 Furniss D, Critchley P, Giele H, Wilkie AO. Nonsense-mediated decay and the molecular pathogenesis of mutations in SALL1 and GLI3. Am J Med Genet A 2007; 143A (24) 3150-3160
  • 42 Radhakrishna U, Bornholdt D, Scott HS. et al. The phenotypic spectrum of GLI3 morphopathies includes autosomal dominant preaxial polydactyly type-IV and postaxial polydactyly type-A/B; No phenotype prediction from the position of GLI3 mutations. Am J Hum Genet 1999; 65 (03) 645-655
  • 43 Farooq M, Troelsen JT, Boyd M. et al. Preaxial polydactyly/triphalangeal thumb is associated with changed transcription factor-binding affinity in a family with a novel point mutation in the long-range cis-regulatory element ZRS. Eur J Hum Genet 2010; 18 (06) 733-736
  • 44 Wieczorek D, Pawlik B, Li Y. et al. A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb. Hum Mutat 2010; 31 (01) 81-89
  • 45 Akiyama H, Chaboissier MC, Martin JF, Schedl A, de B Crombrugghe. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002; 16 (21) 2813-2828
  • 46 Al-Qattan MM. Central and ulnar cleft hands: a review of concurrent deformities in a series of 47 patients and their pathogenesis. J Hand Surg Eur Vol 2014; 39 (05) 510-519
  • 47 Crackower MA, Motoyama J, Tsui LC. Defect in the maintenance of the apical ectodermal ridge in the Dactylaplasia mouse. Dev Biol 1998; 201 (01) 78-89