CC BY-NC-ND 4.0 · Semin Liver Dis 2021; 41(04): 421-434
DOI: 10.1055/s-0041-1730927
Review Article

Insights into Nonalcoholic Fatty-Liver Disease Heterogeneity

Marco Arrese
1   Department of Gastroenterology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
2   Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
,
Juan P. Arab
1   Department of Gastroenterology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
2   Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
,
Francisco Barrera
1   Department of Gastroenterology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
2   Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
,
Benedikt Kaufmann
3   Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, California
,
Luca Valenti
4   Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Translational Medicine, Department of Transfusion, Medicine and Hematology, Fondazione IRCCS Ca' Granda, Pad Marangoni, Milan, Italy
,
Ariel E. Feldstein
3   Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, California
› Author Affiliations
Funding Sources This work was funded, in part, by grants from the Fondo Nacional De Ciencia y Tecnología de Chile (FONDECYT no.: 1191145 to M.A., no.:1200227 to J.P.A., and no.:1191183 to F.B.), the Comisión Nacional de Investigación, Ciencia y Tecnología (CONICYT, AFB170005, CARE, Chile, UC). M.A. is part of the European-Latin American ESCALON consortium funded by the European Union's Horizon 2020 Research and Innovation Program under grant agreement no. 825510. A.E.F. was supported was by NIH grants R01 DK113592 and R01 AA024206. L.V. was supported by project grants from MyFirst Grant AIRC n.16888, Ricerca Finalizzata Ministero della Salute RF-2016–02364358 (“Impact of whole exome sequencing on the clinical management of patients with advanced nonalcoholic fatty-liver and cryptogenic-liver disease”), Ricerca corrente Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, the European Union (EU) Program Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- “Liver Investigation: Testing Marker Utility in Steatohepatitis,” Program “Photonics” under grant agreement “101016726” for the project “REVEAL: Neuronal microscopy for cell behavioural examination and manipulation,” Gilead_IN-IT-989–5790 “Developing a model of care for risk stratification and management of diabetic patients with non-alcoholic fatty-liver disease (NAFLD),” Fondazione IRCCS Ca' Granda “Liver BIBLE” PR-0391, Fondazione IRCCS Ca' Granda core COVID-19 Biobank (RC100017A).

Abstract

The acronym nonalcoholic fatty-liver disease (NAFLD) groups a heterogeneous patient population. Although in many patients the primary driver is metabolic dysfunction, a complex and dynamic interaction of different factors (i.e., sex, presence of one or more genetic variants, coexistence of different comorbidities, diverse microbiota composition, and various degrees of alcohol consumption among others) takes place to determine disease subphenotypes with distinct natural history and prognosis and, eventually, different response to therapy. This review aims to address this topic through the analysis of existing data on the differential contribution of known factors to the pathogenesis and clinical expression of NAFLD, thus determining the different clinical subphenotypes observed in practice. To improve our understanding of NAFLD heterogeneity and the dominant drivers of disease in patient subgroups would predictably impact on the development of more precision-targeted therapies for NAFLD.

Abbreviations

ACC, acetyl-CoA carboxylase; APOB, apolipoprotein B; CaHSCs, central vein-associated HSCs; CRP, C-reactive protein; DAMPs, damage-associated molecular patterns; DNL, de novo lipogenesis; GCKR, glucokinase regulator; GWAS, genome-wide association studies; HCC, hepatocellular carcinoma; HSC, hepatic stellate cells; IL, interleukin; MBOAT7, membrane bound O-acyl transferase; MoMFs, monocyte-derived macrophages; NAFLD, nonalcoholic fatty-liver disease; NAFL, nonalcoholic fatty-liver; NASH, nonalcoholic steatohepatitis; NLRP3, NLR family pyrin domain containing 3; PaHSCs, portal vein-associated HSCs; PAMPs, pathogen-associated molecular patterns; PNPLA3, patatin-like phospholipase domain-containing 3; PRS, polygenic risk scores; scRNA-seq, single cell RNA sequencing; TDM2, type 2 diabetes mellitus; TM6SF2: transmembrane 6 superfamily member 2; TNF-a, tumor necrosis factor-a.




Publication History

Article published online:
07 July 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64 (01) 73-84
  • 2 Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology 2020; 158 (07) 1851-1864
  • 3 Chalasani N, Younossi Z, Lavine JE. et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67 (01) 328-357
  • 4 Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2021; 18 (04) 223-238
  • 5 Younossi ZM, Marchesini G, Pinto-Cortez H, Petta S. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: implications for liver transplantation. Transplantation 2019; 103 (01) 22-27
  • 6 Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018; 67 (01) 123-133
  • 7 Younossi ZM, Corey KE, Lim JK. AGA clinical practice update on lifestyle modification using diet and exercise to achieve weight loss in the management of nonalcoholic fatty liver disease: expert review. Gastroenterology 2021; 160 (03) 912-918
  • 8 Thorp A, Stine JG. Exercise as medicine: the impact of exercise training on nonalcoholic fatty liver disease. Curr Hepatol Rep 2020; 19 (04) 402-411
  • 9 Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol 2017; 67 (04) 829-846
  • 10 Vuppalanchi R, Noureddin M, Alkhouri N, Sanyal AJ. Therapeutic pipeline in nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 2021
  • 11 Ratziu V, Friedman SL. Why do so many NASH trials fail?. Gastroenterology 2020:S0016-5085(20)30680-6
  • 12 Ampuero J, Romero-Gomez M. Stratification of patients in NASH clinical trials: a pitfall for trial success. JHEP Rep 2020; 2 (05) 100148
  • 13 Sookoian S, Pirola CJ. Precision medicine in nonalcoholic fatty liver disease: New therapeutic insights from genetics and systems biology. Clin Mol Hepatol 2020; 26 (04) 461-475
  • 14 Cespiati A, Youngson NA, Tourna A, Valenti L. Genetics and epigenetics in the clinic: precision medicine in the management of fatty liver disease. Curr Pharm Des 2020; 26 (10) 998-1009
  • 15 Lonardo A, Arab JP, Arrese M. Perspectives on precision medicine approaches to NAFLD diagnosis and management. Adv Ther 2021; (e-pub ahead of print) DOI: 10.1007/s12325-021-01690-1.
  • 16 Mauvais-Jarvis F, Bairey Merz N, Barnes PJ. et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 2020; 396 (10250): 565-582
  • 17 Trépo E, Valenti L. Update on NAFLD genetics: from new variants to the clinic. J Hepatol 2020; 72 (06) 1196-1209
  • 18 Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol 2015; 62 (1, suppl): S47-S64
  • 19 Sharpton SR, Schnabl B, Knight R, Loomba R. Current concepts, opportunities, and challenges of gut microbiome-based personalized medicine in nonalcoholic fatty liver disease. Cell Metab 2021; 33 (01) 21-32
  • 20 Arab JP, Arrese M, Shah VH. Gut microbiota in non-alcoholic fatty liver disease and alcohol-related liver disease: current concepts and perspectives. Hepatol Res 2020; 50 (04) 407-418
  • 21 Jiang L, Schnabl B. Gut microbiota in liver disease: what do we know and what do we not know?. Physiology (Bethesda) 2020; 35 (04) 261-274
  • 22 Idalsoaga F, Kulkarni AV, Mousa OY, Arrese M, Arab JP. Non-alcoholic fatty liver disease and alcohol-related liver disease: two intertwined entities. Front Med (Lausanne) 2020; 7: 448
  • 23 Eslam M, Sanyal AJ, George J. International Consensus Panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020; 158 (07) 1999-2014.e1
  • 24 Eslam M, Newsome PN, Sarin SK. et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 2020; 73 (01) 202-209
  • 25 Younossi ZM, Rinella ME, Sanyal AJ. et al. From NAFLD to MAFLD: implications of a premature change in terminology. Hepatology 2021; 73 (03) 1194-1198
  • 26 Ratziu V, Rinella M, Beuers U. et al. The times they are a-changin' (for NAFLD as well). J Hepatol 2020; 73 (06) 1307-1309
  • 27 Romeo S, Sanyal A, Valenti L. Leveraging human genetics to identify potential new treatments for fatty liver disease. Cell Metab 2020; 31 (01) 35-45
  • 28 Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2014; 2 (11) 901-910
  • 29 Dongiovanni P, Petta S, Maglio C. et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015; 61 (02) 506-514
  • 30 Emdin CA, Haas M, Ajmera V. et al. Association of genetic variation with cirrhosis: a multi-trait genome-wide association and gene-environment interaction study. Gastroenterology 2021; 160 (05) 1620-1633.e13
  • 31 Jamialahmadi O, Mancina RM, Ciociola E. et al. Exome-wide association study on alanine aminotransferase identifies sequence variants in the GPAM and APOE associated with fatty liver disease. Gastroenterology 2021; 160 (05) 1634-1646.e7
  • 32 Emdin CA, Haas ME, Khera AV. et al; Million Veteran Program. A missense variant in mitochondrial amidoxime reducing component 1 gene and protection against liver disease. PLoS Genet 2020; 16 (04) e1008629
  • 33 Abul-Husn NS, Cheng X, Li AH. et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med 2018; 378 (12) 1096-1106
  • 34 Dongiovanni P, Stender S, Pietrelli A. et al. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J Intern Med 2018; 283 (04) 356-370
  • 35 Bianco C, Jamialahmadi O, Pelusi S. et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J Hepatol 2021; 74 (04) 775-782
  • 36 Gellert-Kristensen H, Richardson TG, Davey Smith G, Nordestgaard BG, Tybjaerg-Hansen A, Stender S. Combined effect of PNPLA3, TM6SF2, and HSD17B13 variants on risk of cirrhosis and hepatocellular carcinoma in the general population. Hepatology 2020; 72 (03) 845-856
  • 37 Stender S, Kozlitina J, Nordestgaard BG, Tybjærg-Hansen A, Hobbs HH, Cohen JC. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet 2017; 49 (06) 842-847
  • 38 Barata L, Feitosa MF, Bielak LF. et al. Insulin resistance exacerbates genetic predisposition to nonalcoholic fatty liver disease in individuals without diabetes. Hepatol Commun 2019; 3 (07) 894-907
  • 39 Wei JL, Leung JC, Loong TC. et al. Prevalence and severity of nonalcoholic fatty liver disease in non-obese patients: a population study using proton-magnetic resonance spectroscopy. Am J Gastroenterol 2015; 110 (09) 1306-1314 , quiz 1315
  • 40 Fracanzani AL, Petta S, Lombardi R. et al. Liver and cardiovascular damage in patients with lean nonalcoholic fatty liver disease, and association with visceral obesity. Clin Gastroenterol Hepatol 2017; 15 (10) 1604-1611.e1
  • 41 Valenti LVC, Baselli GA. Genetics of nonalcoholic fatty liver disease: a 2018 update. Curr Pharm Des 2018; 24 (38) 4566-4573
  • 42 Valenti L, Nobili V. PNPLA3 I148M polymorphism and liver damage in obese children. J Pediatr 2011; 159 (05) 876
  • 43 Valenti L, Rumi M, Galmozzi E. et al. Patatin-like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C. Hepatology 2011; 53 (03) 791-799
  • 44 Dongiovanni P, Donati B, Fares R. et al. PNPLA3 I148M polymorphism and progressive liver disease. World J Gastroenterol 2013; 19 (41) 6969-6978
  • 45 Pelusi S, Baselli G, Pietrelli A. et al. Rare pathogenic variants predispose to hepatocellular carcinoma in nonalcoholic fatty liver disease. Sci Rep 2019; 9 (01) 3682
  • 46 Cefalù AB, Pirruccello JP, Noto D. et al. A novel APOB mutation identified by exome sequencing cosegregates with steatosis, liver cancer, and hypocholesterolemia. Arterioscler Thromb Vasc Biol 2013; 33 (08) 2021-2025
  • 47 Valenti L, Romeo S. Editorial: new insights into the relationship between the intestine and non-alcoholic fatty liver-is “fatty gut” involved in disease progression?. Aliment Pharmacol Ther 2017; 46 (03) 377-378
  • 48 Liu Z, Zhang Y, Graham S. et al. Causal relationships between NAFLD, T2D and obesity have implications for disease subphenotyping. J Hepatol 2020; 73 (02) 263-276
  • 49 Speliotes EK, Yerges-Armstrong LM, Wu J. et al; NASH CRN, GIANT Consortium, MAGIC Investigators, GOLD Consortium. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 2011; 7 (03) e1001324
  • 50 Dongiovanni P, Petta S, Mannisto V. et al. Statin use and non-alcoholic steatohepatitis in at risk individuals. J Hepatol 2015; 63 (03) 705-712
  • 51 Arab JP, Arrese M, Trauner M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol 2018; 13: 321-350
  • 52 Brunt EM, Wong VW, Nobili V. et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers 2015; 1: 15080
  • 53 Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24 (07) 908-922
  • 54 Sookoian S, Pirola CJ, Valenti L, Davidson NO. Genetic pathways in nonalcoholic fatty liver disease: insights from systems biology. Hepatology 2020; 72 (01) 330-346
  • 55 Bence KK, Birnbaum MJ. Metabolic drivers of non-alcoholic fatty liver disease. Mol Metab 2020; (e-pub ahead of print) DOI: 10.1016/j.molmet.2020.101143.
  • 56 Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016; 65 (08) 1038-1048
  • 57 Tilg H, Adolph TE, Moschen AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease - revisited after a decade. Hepatology 2021; 73 (02) 833-842
  • 58 Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014; 146 (03) 726-735
  • 59 Smith GI, Shankaran M, Yoshino M. et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J Clin Invest 2020; 130 (03) 1453-1460
  • 60 Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 2018; 15 (06) 349-364
  • 61 Parthasarathy G, Revelo X, Malhi H. Pathogenesis of nonalcoholic steatohepatitis: an overview. Hepatol Commun 2020; 4 (04) 478-492
  • 62 Buyco DG, Martin J, Jeon S, Hooks R, Lin C, Carr R. Experimental models of metabolic and alcoholic fatty liver disease. World J Gastroenterol 2021; 27 (01) 1-18
  • 63 Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Animal models of fibrosis in nonalcoholic steatohepatitis: do they reflect human disease?. Adv Nutr 2020; 11 (06) 1696-1711
  • 64 Pramfalk C, Pavlides M, Banerjee R. et al. Sex-specific differences in hepatic fat oxidation and synthesis may explain the higher propensity for NAFLD in men. J Clin Endocrinol Metab 2015; 100 (12) 4425-4433
  • 65 Paglialunga S, Dehn CA. Clinical assessment of hepatic de novo lipogenesis in non-alcoholic fatty liver disease. Lipids Health Dis 2016; 15 (01) 159
  • 66 Fernández-Mincone T, Contreras-Briceño F, Espinosa-Ramírez M. et al. Nonalcoholic fatty liver disease and sarcopenia: pathophysiological connections and therapeutic implications. Expert Rev Gastroenterol Hepatol 2020; 14 (12) 1141-1157
  • 67 Cabrera D, Ruiz A, Cabello-Verrugio C. et al. Diet-induced nonalcoholic fatty liver disease is associated with sarcopenia and decreased serum insulin-like growth factor-1. Dig Dis Sci 2016; 61 (11) 3190-3198
  • 68 Chakravarthy MV, Siddiqui MS, Forsgren MF, Sanyal AJ. Harnessing muscle-liver crosstalk to treat nonalcoholic steatohepatitis. Front Endocrinol (Lausanne) 2020; 11: 592373
  • 69 Kashiwagi K, Takayama M, Fukuhara K. et al. A significant association of non-obese non-alcoholic fatty liver disease with sarcopenic obesity. Clin Nutr ESPEN 2020; 38: 86-93
  • 70 Cai J, Zhang XJ, Li H. The role of innate immune cells in nonalcoholic steatohepatitis. Hepatology 2019; 70 (03) 1026-1037
  • 71 Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate immunity and inflammation in NAFLD/NASH. Dig Dis Sci 2016; 61 (05) 1294-1303
  • 72 Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut 2019; 68 (02) 359-370
  • 73 Porras D, Nistal E, Martínez-Flórez S, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Intestinal microbiota modulation in obesity-related non-alcoholic fatty liver disease. Front Physiol 2018; 9: 1813
  • 74 Tripathi A, Debelius J, Brenner DA. et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15 (07) 397-411
  • 75 Candia R, Ruiz A, Torres-Robles R, Chávez-Tapia N, Méndez-Sánchez N, Arrese M. Risk of non-alcoholic fatty liver disease in patients with psoriasis: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol 2015; 29 (04) 656-662
  • 76 Heitmann J, Frings VG, Geier A, Goebeler M, Kerstan A. Non-alcoholic fatty liver disease and psoriasis - is there a shared proinflammatory network?. J Dtsch Dermatol Ges 2021
  • 77 Damiani G, Leone S, Fajgenbaum K. et al. Nonalcoholic fatty liver disease prevalence in an Italian cohort of patients with hidradenitis suppurativa: a multi-center retrospective analysis. World J Hepatol 2019; 11 (04) 391-401
  • 78 van der Voort EA, Koehler EM, Dowlatshahi EA. et al. Psoriasis is independently associated with nonalcoholic fatty liver disease in patients 55 years old or older: results from a population-based study. J Am Acad Dermatol 2014; 70 (03) 517-524
  • 79 van der Voort EA, Koehler EM, Nijsten T. et al. Increased prevalence of advanced liver fibrosis in patients with psoriasis: a cross-sectional analysis from the rotterdam study. Acta Derm Venereol 2016; 96 (02) 213-217
  • 80 Durán-Vian C, Arias-Loste MT, Hernández JL. et al. High prevalence of non-alcoholic fatty liver disease among hidradenitis suppurativa patients independent of classic metabolic risk factors. J Eur Acad Dermatol Venereol 2019; 33 (11) 2131-2136
  • 81 Prussick RB, Miele L. Nonalcoholic fatty liver disease in patients with psoriasis: a consequence of systemic inflammatory burden?. Br J Dermatol 2018; 179 (01) 16-29
  • 82 He B, Wu L, Xie W. et al. The imbalance of Th17/Treg cells is involved in the progression of nonalcoholic fatty liver disease in mice. BMC Immunol 2017; 18 (01) 33
  • 83 Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147 (04) 765-783.e4
  • 84 Wree A, Holtmann TM, Inzaugarat ME, Feldstein AE. Novel drivers of the inflammatory response in liver injury and fibrosis. Semin Liver Dis 2019; 39 (03) 275-282
  • 85 Wree A, Eguchi A, McGeough MD. et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 2014; 59 (03) 898-910
  • 86 Wree A, McGeough MD, Peña CA. et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berl) 2014; 92 (10) 1069-1082
  • 87 Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 2017; 17 (05) 306-321
  • 88 Krenkel O, Hundertmark J, Abdallah AT. et al. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut 2020; 69 (03) 551-563
  • 89 Chu AL, Schilling JD, King KR, Feldstein AE. The power of single-cell analysis for the study of liver pathobiology. Hepatology 2021; 73 (01) 437-448
  • 90 Xiong X, Kuang H, Ansari S. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell 2019; 75 (03) 644-660.e5
  • 91 Daemen S, Gainullina A, Kalugotla G. et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep 2021; 34 (02) 108626
  • 92 Tran S, Baba I, Poupel L. et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 2020; 53 (03) 627-640.e5
  • 93 Vilar-Gomez E, Calzadilla-Bertot L, Wai-Sun Wong V. et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study. Gastroenterology 2018; 155 (02) 443-457.e17
  • 94 Ekstedt M, Hagström H, Nasr P. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015; 61 (05) 1547-1554
  • 95 Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18 (03) 151-166
  • 96 Schwabe RF, Tabas I, Pajvani UB. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 2020; 158 (07) 1913-1928
  • 97 Krenkel O, Hundertmark J, Ritz TP, Weiskirchen R, Tacke F. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cells 2019; 8 (05) E503
  • 98 Dobie R, Wilson-Kanamori JR, Henderson BEP. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep 2019; 29 (07) 1832-1847.e8
  • 99 Lonardo A, Nascimbeni F, Ballestri S. et al. Sex differences in nonalcoholic fatty liver disease: state of the art and identification of research gaps. Hepatology 2019; 70 (04) 1457-1469
  • 100 Bertolotti M, Lonardo A, Mussi C. et al. Nonalcoholic fatty liver disease and aging: epidemiology to management. World J Gastroenterol 2014; 20 (39) 14185-14204
  • 101 Vittorio J, Lavine JE. Recent advances in understanding and managing pediatric nonalcoholic fatty liver disease. F1000 Res 2020; 9: 9
  • 102 Golabi P, Paik J, Reddy R, Bugianesi E, Trimble G, Younossi ZM. Prevalence and long-term outcomes of non-alcoholic fatty liver disease among elderly individuals from the United States. BMC Gastroenterol 2019; 19 (01) 56
  • 103 Yang JD, Abdelmalek MF, Pang H. et al. Gender and menopause impact severity of fibrosis among patients with nonalcoholic steatohepatitis. Hepatology 2014; 59 (04) 1406-1414
  • 104 Petroni ML, Brodosi L, Bugianesi E, Marchesini G. Management of non-alcoholic fatty liver disease. BMJ 2021; 372: m4747
  • 105 Kanwal F, Kramer JR, Li L. et al. Effect of metabolic traits on the risk of cirrhosis and hepatocellular cancer in nonalcoholic fatty liver disease. Hepatology 2020; 71 (03) 808-819
  • 106 Younossi ZM, Golabi P, de Avila L. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol 2019; 71 (04) 793-801
  • 107 Jarvis H, Craig D, Barker R. et al. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of population-based observational studies. PLoS Med 2020; 17 (04) e1003100
  • 108 Arab JP, Dirchwolf M, Álvares-da-Silva MR. et al. Latin American Association for the study of the liver (ALEH) practice guidance for the diagnosis and treatment of non-alcoholic fatty liver disease. Ann Hepatol 2020; 19 (06) 674-690
  • 109 Tsochatzis EA, Newsome PN. Non-alcoholic fatty liver disease and the interface between primary and secondary care. Lancet Gastroenterol Hepatol 2018; 3 (07) 509-517
  • 110 Lu FB, Hu ED, Xu LM. et al. The relationship between obesity and the severity of non-alcoholic fatty liver disease: systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 2018; 12 (05) 491-502
  • 111 Younes R, Govaere O, Petta S. et al. Caucasian lean subjects with non-alcoholic fatty liver disease share long-term prognosis of non-lean: time for reappraisal of BMI-driven approach?. Gut 2021; (e-pub ahead of print) DOI: 10.1136/gutjnl-2020-322564.
  • 112 Ye Q, Zou B, Yeo YH. et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020; 5 (08) 739-752
  • 113 Lu FB, Zheng KI, Rios RS, Targher G, Byrne CD, Zheng MH. Global epidemiology of lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Gastroenterol Hepatol 2020; 35 (12) 2041-2050
  • 114 Younes R, Bugianesi E. NASH in lean individuals. Semin Liver Dis 2019; 39 (01) 86-95
  • 115 Golabi P, Paik J, Fukui N, Locklear CT, de Avilla L, Younossi ZM. Patients with lean nonalcoholic fatty liver disease are metabolically abnormal and have a higher risk for mortality. Clin Diabetes 2019; 37 (01) 65-72
  • 116 Younossi Z, Anstee QM, Marietti M. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15 (01) 11-20
  • 117 Le MH, Yeo YH, Cheung R, Wong VW, Nguyen MH. Ethnic influence on nonalcoholic fatty liver disease prevalence and lack of disease awareness in the United States, 2011-2016. J Intern Med 2020; 287 (06) 711-722
  • 118 Lonardo A, Suzuki A. Focus on Clinical Aspects and Implications for Practice and Translational Research. Sexual dimorphism of NAFLD in adults. J Clin Med 2020; 9 (05) E1278
  • 119 Balakrishnan M, Patel P, Dunn-Valadez S. et al. Women have a lower risk of nonalcoholic fatty liver disease but a higher risk of progression vs men: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2021; 19 (01) 61-71.e15
  • 120 Parikh MP, Gupta NM, McCullough AJ. Obstructive sleep apnea and the liver. Clin Liver Dis 2019; 23 (02) 363-382
  • 121 Hernández A, Geng Y, Sepúlveda R. et al. Chemical hypoxia induces pro-inflammatory signals in fat-laden hepatocytes and contributes to cellular crosstalk with Kupffer cells through extracellular vesicles. Biochim Biophys Acta Mol Basis Dis 2020; 1866 (06) 165753
  • 122 Mesarwi OA, Loomba R, Malhotra A. Obstructive sleep apnea, hypoxia, and nonalcoholic fatty liver disease. Am J Respir Crit Care Med 2019; 199 (07) 830-841
  • 123 Rosato V, Masarone M, Dallio M, Federico A, Aglitti A, Persico M. NAFLD and extra-hepatic comorbidities: current evidence on a multi-organ metabolic syndrome. Int J Environ Res Public Health 2019; 16 (18) E3415
  • 124 Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 1999; 116 (06) 1413-1419
  • 125 Pelusi S, Cespiati A, Rametta R. et al. Prevalence and risk factors of significant fibrosis in patients with nonalcoholic fatty liver without steatohepatitis. Clin Gastroenterol Hepatol 2019; 17 (11) 2310-2319.e6
  • 126 Kleiner DE, Brunt EM, Wilson LA. et al; Nonalcoholic Steatohepatitis Clinical Research Network. Association of histologic disease activity with progression of nonalcoholic fatty liver disease. JAMA Netw Open 2019; 2 (10) e1912565
  • 127 Ekstedt M, Franzén LE, Mathiesen UL, Kechagias S. Low clinical relevance of the nonalcoholic fatty liver disease activity score (NAS) in predicting fibrosis progression. Scand J Gastroenterol 2012; 47 (01) 108-115
  • 128 Pais R, Charlotte F, Fedchuk L. et al; LIDO Study Group. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J Hepatol 2013; 59 (03) 550-556
  • 129 Wong VW, Wong GL, Choi PC. et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 2010; 59 (07) 969-974
  • 130 Argo CK, Northup PG, Al-Osaimi AM, Caldwell SH. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol 2009; 51 (02) 371-379
  • 131 Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol 2015; 13 (04) 643-654.e1 , 9, quiz e39–e40
  • 132 Cariou B, Byrne CD, Loomba R, Sanyal AJ. Nonalcoholic fatty liver disease as a metabolic disease in humans: a literature review. Diabetes Obes Metab 2021; 23 (05) 1069-1083
  • 133 McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J Hepatol 2015; 62 (05) 1148-1155
  • 134 Teli MR, James OF, Burt AD, Bennett MK, Day CP. The natural history of nonalcoholic fatty liver: a follow-up study. Hepatology 1995; 22 (06) 1714-1719
  • 135 Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 1990; 11 (01) 74-80
  • 136 Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 1980; 55 (07) 434-438
  • 137 Adler M, Schaffner F. Fatty liver hepatitis and cirrhosis in obese patients. Am J Med 1979; 67 (05) 811-816
  • 138 Wanless IR, Lentz JS. Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology 1990; 12 (05) 1106-1110
  • 139 Angulo P, Kleiner DE, Dam-Larsen S. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2015; 149 (02) 389-97.e10
  • 140 Younossi ZM, Stepanova M, Rafiq N. et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology 2011; 53 (06) 1874-1882
  • 141 Kim D, Kim WR, Kim HJ, Therneau TM. Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 2013; 57 (04) 1357-1365
  • 142 Vuppalanchi R, Jain AK, Deppe R. et al. Relationship between changes in serum levels of keratin 18 and changes in liver histology in children and adults with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2014; 12 (12) 2121-30.e1 , 2
  • 143 Feldstein AE, Wieckowska A, Lopez AR, Liu YC, Zein NN, McCullough AJ. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology 2009; 50 (04) 1072-1078
  • 144 Wong VW, Hui AY, Tsang SW. et al. Metabolic and adipokine profile of Chinese patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2006; 4 (09) 1154-1161
  • 145 Musso G, Gambino R, Durazzo M. et al. Adipokines in NASH: postprandial lipid metabolism as a link between adiponectin and liver disease. Hepatology 2005; 42 (05) 1175-1183
  • 146 Hui JM, Hodge A, Farrell GC, Kench JG, Kriketos A, George J. Beyond insulin resistance in NASH: TNF-alpha or adiponectin?. Hepatology 2004; 40 (01) 46-54
  • 147 Angulo P, Hui JM, Marchesini G. et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007; 45 (04) 846-854
  • 148 Sterling RK, Lissen E, Clumeck N. et al; APRICOT Clinical Investigators. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006; 43 (06) 1317-1325
  • 149 Angulo P, Bugianesi E, Bjornsson ES. et al. Simple noninvasive systems predict long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2013; 145 (04) 782-9.e4
  • 150 McPherson S, Stewart SF, Henderson E, Burt AD, Day CP. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut 2010; 59 (09) 1265-1269
  • 151 Harrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander-Tetri BA. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut 2008; 57 (10) 1441-1447
  • 152 Ampuero J, Pais R, Aller R. et al; HEPAmet Registry. Development and validation of hepamet fibrosis scoring system-a simple, noninvasive test to identify patients with nonalcoholic fatty liver disease with advanced fibrosis. Clin Gastroenterol Hepatol 2020; 18 (01) 216-225.e5
  • 153 Castera L, Friedrich-Rust M, Loomba R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 2019; 156 (05) 1264-1281.e4
  • 154 Chen J, Talwalkar JA, Yin M, Glaser KJ, Sanderson SO, Ehman RL. Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. Radiology 2011; 259 (03) 749-756
  • 155 Noureddin M, Lam J, Peterson MR. et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 2013; 58 (06) 1930-1940
  • 156 European Association for Study of Liver, Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH clinical practice guidelines: non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol 2015; 63 (01) 237-264
  • 157 Tapper EB, Challies T, Nasser I, Afdhal NH, Lai M. The performance of vibration controlled transient elastography in a US cohort of patients with nonalcoholic fatty liver disease. Am J Gastroenterol 2016; 111 (05) 677-684
  • 158 Chen J, Yin M, Talwalkar JA. et al. Diagnostic performance of MR elastography and vibration-controlled transient elastography in the detection of hepatic fibrosis in patients with severe to morbid obesity. Radiology 2017; 283 (02) 418-428
  • 159 Adams LA, Chan WK. Noninvasive tests in the assessment of NASH and NAFLD fibrosis: now and into the future. Semin Liver Dis 2020; 40 (04) 331-338
  • 160 Loomba R, Adams LA. Advances in non-invasive assessment of hepatic fibrosis. Gut 2020; 69 (07) 1343-1352
  • 161 Subramanian M, Wojtusciszyn A, Favre L. et al. Precision medicine in the era of artificial intelligence: implications in chronic disease management. J Transl Med 2020; 18 (01) 472
  • 162 Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2019; 16 (06) 377-386
  • 163 Arrese M, Barrera F, Triantafilo N, Arab JP. Concurrent nonalcoholic fatty liver disease and type 2 diabetes: diagnostic and therapeutic considerations. Expert Rev Gastroenterol Hepatol 2019; 13 (09) 849-866
  • 164 Paik JM, Deshpande R, Golabi P, Younossi I, Henry L, Younossi ZM. The impact of modifiable risk factors on the long-term outcomes of non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2020; 51 (02) 291-304
  • 165 Saiman Y, Hooks R, Carr RM. High-risk groups for non-alcoholic fatty liver and non-alcoholic steatohepatitis development and progression. Curr Hepatol Rep 2020; 19: 412-419
  • 166 Koo BK, Joo SK, Kim D. et al. Development and validation of a scoring system, based on genetic and clinical factors, to determine risk of steatohepatitis in asian patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2020; 18 (11) 2592-2599.e10
  • 167 European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64 (06) 1388-1402
  • 168 Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 2015; 149 (02) 367-78.e5 , quiz e14–e15
  • 169 Bhogal MS, Langford R. Gender differences in weight loss; evidence from a NHS weight management service. Public Health 2014; 128 (09) 811-813
  • 170 Shen J, Wong GL, Chan HL. et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2015; 30 (01) 139-146
  • 171 Krawczyk M, Jiménez-Agüero R, Alustiza JM. et al. PNPLA3 p.I148M variant is associated with greater reduction of liver fat content after bariatric surgery. Surg Obes Relat Dis 2016; 12 (10) 1838-1846
  • 172 Luukkonen PK, Qadri S, Lehtimäki TE. et al. The PNPLA3-I148M variant confers an antiatherogenic lipid profile in insulin-resistant patients. J Clin Endocrinol Metab 2021; 106 (01) e300-e315
  • 173 Bianco C, Jamialahmadi O, Pelusi S. et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J Hepatol 2021; 74 (04) 775-782
  • 174 Mato JM, Alonso C, Noureddin M, Lu SC. Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease. World J Gastroenterol 2019; 25 (24) 3009-3020
  • 175 Alonso C, Fernández-Ramos D, Varela-Rey M. et al. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology 2017; 152 (06) 1449-1461.e7
  • 176 Xing B, Zhao Y, Dong B, Zhou Y, Lv W, Zhao W. Effects of sodium-glucose cotransporter 2 inhibitors on non-alcoholic fatty liver disease in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. J Diabetes Investig 2020; 11 (05) 1238-1247
  • 177 Blazina I, Selph S. Diabetes drugs for nonalcoholic fatty liver disease: a systematic review. Syst Rev 2019; 8 (01) 295
  • 178 Lv X, Dong Y, Hu L, Lu F, Zhou C, Qin S. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) for the management of nonalcoholic fatty liver disease (NAFLD): a systematic review. Endocrinol Diabetes Metab 2020; 3 (03) e00163
  • 179 Mantovani A, Byrne CD, Scorletti E, Mantzoros CS, Targher G. Efficacy and safety of anti-hyperglycaemic drugs in patients with non-alcoholic fatty liver disease with or without diabetes: An updated systematic review of randomized controlled trials. Diabetes Metab 2020; 46 (06) 427-441
  • 180 Mantovani A, Petracca G, Csermely A, Beatrice G, Targher G. Sodium-Glucose cotransporter-2 inhibitors for treatment of nonalcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Metabolites 2020; 11 (01) 22
  • 181 Wong C, Yaow CYL, Ng CH. et al. Sodium-glucose co-transporter 2 inhibitors for non-alcoholic fatty liver disease in asian patients with type 2 diabetes: a meta-analysis. Front Endocrinol (Lausanne) 2021; 11: 609135
  • 182 Drenth JPH, Schattenberg JM. The nonalcoholic steatohepatitis (NASH) drug development graveyard: established hurdles and planning for future success. Expert Opin Investig Drugs 2020; 29 (12) 1365-1375
  • 183 Lin S, Huang J, Wang M. et al. Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver Int 2020; 40 (09) 2082-2089
  • 184 Wai-Sun Wong V, Kanwal F. On the proposed definition of metabolic-associated fatty liver disease. Clin Gastroenterol Hepatol 2021; 19 (05) 865-870
  • 185 Yamamura S, Eslam M, Kawaguchi T. et al. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int 2020; 40 (12) 3018-3030
  • 186 Lindén D, Ahnmark A, Pingitore P. et al. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. Mol Metab 2019; 22: 49-61
  • 187 Kaiser J. NIH's ‘precision nutrition’ bet aims for individualized diets. Science 2021; 371 (6529): 552
  • 188 Ross R, Goodpaster BH, Koch LG. et al. Precision exercise medicine: understanding exercise response variability. Br J Sports Med 2019; 53 (18) 1141-1153