Semin intervent Radiol 2021; 38(03): 263-272
DOI: 10.1055/s-0041-1731268
Review Article

Noninvasive Imaging Prior to Biliary Interventions

Roberta Catania
1   Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
,
Anil K. Dasyam
2   Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
,
Frank H. Miller
1   Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
,
Amir A. Borhani
1   Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
2   Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
› Author Affiliations

Abstract

Noninvasive imaging is a crucial and initial step in the diagnostic algorithm of patients with suspected biliary pathology and directs the subsequent diagnostic and therapeutic workup, including the endoluminal and percutaneous biliary interventions. This article reviews the current noninvasive imaging methods for the evaluation of biliary system and further discusses their roles in the diagnostic workup of different biliary disease.

Disclosures

None of the authors have conflict of interest.




Publication History

Article published online:
10 August 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Hindman NM, Arif-Tiwari H, Kamel IR. et al; Expert Panel on Gastrointestinal Imaging. ACR Appropriateness Criteria® Jaundice. J Am Coll Radiol 2019; 16 (5S): S126-S140
  • 2 Peterson CM, McNamara MM, Kamel IR. et al; Expert Panel on Gastrointestinal Imaging. ACR Appropriateness Criteria® Right Upper Quadrant Pain. J Am Coll Radiol 2019; 16 (5S): S235-S243
  • 3 Yarmish GM, Smith MP, Rosen MP. et al. ACR appropriateness criteria right upper quadrant pain. J Am Coll Radiol 2014; 11 (03) 316-322
  • 4 Perret RS, Sloop GD, Borne JA. Common bile duct measurements in an elderly population. J Ultrasound Med 2000; 19 (11) 727-730 , quiz 731
  • 5 Matcuk Jr GR, Grant EG, Ralls PW. Ultrasound measurements of the bile ducts and gallbladder: normal ranges and effects of age, sex, cholecystectomy, and pathologic states. Ultrasound Q 2014; 30 (01) 41-48
  • 6 Gurusamy KS, Giljaca V, Takwoingi Y. et al. Ultrasound versus liver function tests for diagnosis of common bile duct stones. Cochrane Database Syst Rev 2015; ;( (02) CD011548
  • 7 Pasanen PA, Partanen KP, Pikkarainen PH, Alhava EM, Janatuinen EK, Pirinen AE. A comparison of ultrasound, computed tomography and endoscopic retrograde cholangiopancreatography in the differential diagnosis of benign and malignant jaundice and cholestasis. Eur J Surg 1993; 159 (01) 23-29
  • 8 Yang MH, Chen TH, Wang SE. et al. Biochemical predictors for absence of common bile duct stones in patients undergoing laparoscopic cholecystectomy. Surg Endosc 2008; 22 (07) 1620-1624
  • 9 Lee CM, Stewart L, Way LW. Postcholecystectomy abdominal bile collections. Arch Surg 2000; 135 (05) 538-542 , discussion 542–544
  • 10 Meacock LM, Sellars ME, Sidhu PS. Evaluation of gallbladder and biliary duct disease using microbubble contrast-enhanced ultrasound. Br J Radiol 2010; 83 (991) 615-627
  • 11 Ratanaprasatporn L, Uyeda JW, Wortman JR, Richardson I, Sodickson AD. Multimodality imaging, including dual-energy CT, in the evaluation of gallbladder disease. Radiographics 2018; 38 (01) 75-89
  • 12 Uyeda JW, Richardson IJ, Sodickson AD. Making the invisible visible: improving conspicuity of noncalcified gallstones using dual-energy CT. Abdom Radiol (NY) 2017; 42 (12) 2933-2939
  • 13 Yang CB, Zhang S, Jia YJ. et al. Clinical application of dual-energy spectral computed tomography in detecting cholesterol gallstones from surrounding bile. Acad Radiol 2017; 24 (04) 478-482
  • 14 Altun E, Semelka RC, Elias Jr J. et al. Acute cholecystitis: MR findings and differentiation from chronic cholecystitis. Radiology 2007; 244 (01) 174-183
  • 15 Miller FH, Hwang CM, Gabriel H, Goodhartz LA, Omar AJ, Parsons III WG. Contrast-enhanced helical CT of choledocholithiasis. AJR Am J Roentgenol 2003; 181 (01) 125-130
  • 16 Yeh BM, Liu PS, Soto JA, Corvera CA, Hussain HK. MR imaging and CT of the biliary tract. Radiographics 2009; 29 (06) 1669-1688
  • 17 Dinkel HP, Moll R, Gassel HJ. et al. Helical CT cholangiography for the detection and localization of bile duct leakage. AJR Am J Roentgenol 1999; 173 (03) 613-617
  • 18 Ziessman HA. Hepatobiliary scintigraphy in 2014. J Nucl Med 2014; 55 (06) 967-975
  • 19 Melamud K, LeBedis CA, Anderson SW, Soto JA. Biliary imaging: multimodality approach to imaging of biliary injuries and their complications. Radiographics 2014; 34 (03) 613-623
  • 20 Singh AK, Nachiappan AC, Verma HA. et al. Postoperative imaging in liver transplantation: what radiologists should know. Radiographics 2010; 30 (02) 339-351
  • 21 Aduna M, Larena JA, Martín D, Martínez-Guereñu B, Aguirre I, Astigarraga E. Bile duct leaks after laparoscopic cholecystectomy: value of contrast-enhanced MRCP. Abdom Imaging 2005; 30 (04) 480-487
  • 22 Cieszanowski A, Stadnik A, Lezak A. et al. Detection of active bile leak with Gd-EOB-DTPA enhanced MR cholangiography: comparison of 20-25  min delayed and 60-180 min delayed images. Eur J Radiol 2013; 82 (12) 2176-2182
  • 23 Stott MA, Farrands PA, Guyer PB, Dewbury KC, Browning JJ, Sutton R. Ultrasound of the common bile duct in patients undergoing cholecystectomy. J Clin Ultrasound 1991; 19 (02) 73-76
  • 24 Sugiyama M, Atomi Y. Endoscopic ultrasonography for diagnosing choledocholithiasis: a prospective comparative study with ultrasonography and computed tomography. Gastrointest Endosc 1997; 45 (02) 143-146
  • 25 Majeed AW, Ross B, Johnson AG, Reed MW. Common duct diameter as an independent predictor of choledocholithiasis: is it useful?. Clin Radiol 1999; 54 (03) 170-172
  • 26 Boys JA, Doorly MG, Zehetner J, Dhanireddy KK, Senagore AJ. Can ultrasound common bile duct diameter predict common bile duct stones in the setting of acute cholecystitis?. Am J Surg 2014; 207 (03) 432-435 , discussion 435
  • 27 Anderson SW, Lucey BC, Varghese JC, Soto JA. Accuracy of MDCT in the diagnosis of choledocholithiasis. AJR Am J Roentgenol 2006; 187 (01) 174-180
  • 28 Anderson SW, Rho E, Soto JA. Detection of biliary duct narrowing and choledocholithiasis: accuracy of portal venous phase multidetector CT. Radiology 2008; 247 (02) 418-427
  • 29 Nandalur KR, Hussain HK, Weadock WJ. et al. Possible biliary disease: diagnostic performance of high-spatial-resolution isotropic 3D T2-weighted MRCP. Radiology 2008; 249 (03) 883-890
  • 30 Hekimoglu K, Ustundag Y, Dusak A. et al. MRCP vs. ERCP in the evaluation of biliary pathologies: review of current literature. J Dig Dis 2008; 9 (03) 162-169
  • 31 Irie H, Honda H, Kuroiwa T. et al. Pitfalls in MR cholangiopancreatographic interpretation. Radiographics 2001; 21 (01) 23-37
  • 32 Kapoor BS, Mauri G, Lorenz JM. Management of biliary strictures: state-of-the-art review. Radiology 2018; 289 (03) 590-603
  • 33 Katabathina VS, Dasyam AK, Dasyam N, Hosseinzadeh K. Adult bile duct strictures: role of MR imaging and MR cholangiopancreatography in characterization. Radiographics 2014; 34 (03) 565-586
  • 34 Nuzzo G, Giuliante F, Giovannini I. et al. Bile duct injury during laparoscopic cholecystectomy: results of an Italian national survey on 56 591 cholecystectomies. Arch Surg 2005; 140 (10) 986-992
  • 35 Sicklick JK, Camp MS, Lillemoe KD. et al. Surgical management of bile duct injuries sustained during laparoscopic cholecystectomy: perioperative results in 200 patients. Ann Surg 2005; 241 (05) 786-792 , discussion 793–795
  • 36 Thomas S, Jahangir K. Noninvasive imaging of the biliary system relevant to percutaneous interventions. Semin Intervent Radiol 2016; 33 (04) 277-282
  • 37 Hoeffel C, Azizi L, Lewin M. et al. Normal and pathologic features of the postoperative biliary tract at 3D MR cholangiopancreatography and MR imaging. Radiographics 2006; 26 (06) 1603-1620
  • 38 Copelan A, Bahoura L, Tardy F, Kirsch M, Sokhandon F, Kapoor B. Etiology, diagnosis, and management of bilomas: a current update. Tech Vasc Interv Radiol 2015; 18 (04) 236-243
  • 39 Gupta RT, Brady CM, Lotz J, Boll DT, Merkle EM. Dynamic MR imaging of the biliary system using hepatocyte-specific contrast agents. AJR Am J Roentgenol 2010; 195 (02) 405-413
  • 40 Kantarcı M, Pirimoglu B, Karabulut N. et al. Non-invasive detection of biliary leaks using Gd-EOB-DTPA-enhanced MR cholangiography: comparison with T2-weighted MR cholangiography. Eur Radiol 2013; 23 (10) 2713-2722
  • 41 Kul M, Erden A, Düşünceli Atman E. Diagnostic value of Gd-EOB-DTPA-enhanced MR cholangiography in non-invasive detection of postoperative bile leakage. Br J Radiol 2017; 90 (1072): 20160847
  • 42 Banzo I, Blanco I, Gutiérrez-Mendiguchía C, Gómez-Barquín R, Quirce R, Carril JM. Hepatobiliary scintigraphy for the diagnosis of bile leaks produced after T-tube removal in orthotopic liver transplantation. Nucl Med Commun 1998; 19 (03) 229-236
  • 43 Rodriguez-Montes JA, Rojo E, Martín LG. Complications following repair of extrahepatic bile duct injuries after blunt abdominal trauma. World J Surg 2001; 25 (10) 1313-1316
  • 44 Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis - a comprehensive review. J Hepatol 2017; 67 (06) 1298-1323
  • 45 Vitellas KM, Keogan MT, Freed KS. et al. Radiologic manifestations of sclerosing cholangitis with emphasis on MR cholangiopancreatography. Radiographics 2000; 20 (04) 959-975 , quiz 1108–1109, 1112
  • 46 Tanaka A, Tazuma S, Okazaki K, Tsubouchi H, Inui K, Takikawa H. Nationwide survey for primary sclerosing cholangitis and IgG4-related sclerosing cholangitis in Japan. J Hepatobiliary Pancreat Sci 2014; 21 (01) 43-50
  • 47 Nakazawa T, Ohara H, Sano H, Ando T, Joh T. Schematic classification of sclerosing cholangitis with autoimmune pancreatitis by cholangiography. Pancreas 2006; 32 (02) 229
  • 48 Chin MW, Enns R. Hemobilia. Curr Gastroenterol Rep 2010; 12 (02) 121-129
  • 49 Hemobilia NR. Semin Intervent Radiol 2016; 33 (04) 324-331
  • 50 Cathcart S, Birk JW, Tadros M, Schuster M. Hemobilia: an uncommon but notable cause of upper gastrointestinal bleeding. J Clin Gastroenterol 2017; 51 (09) 796-804
  • 51 Zhornitskiy A, Berry R, Han JY, Tabibian JH. Hemobilia: historical overview, clinical update, and current practices. Liver Int 2019; 39 (08) 1378-1388
  • 52 Green MH, Duell RM, Johnson CD, Jamieson NV. Haemobilia. Br J Surg 2001; 88 (06) 773-786
  • 53 Murugesan SD, Sathyanesan J, Lakshmanan A. et al. Massive hemobilia: a diagnostic and therapeutic challenge. World J Surg 2014; 38 (07) 1755-1762
  • 54 Watanabe Y, Nagayama M, Okumura A. et al. MR imaging of acute biliary disorders. Radiographics 2007; 27 (02) 477-495
  • 55 Buscarini E, Savoia A, Brambilla G. et al. Radiofrequency thermal ablation of liver tumors. Eur Radiol 2005; 15 (05) 884-894
  • 56 Pillai K, Akhter J, Chua TC. et al. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Medicine (Baltimore) 2015; 94 (09) e580
  • 57 Su Y, You Y, Zeng Q. et al. Transcholecystic contrast-enhanced ultrasound-guided percutaneous transhepatic biliary drainage for central bile duct protection during thermal tumor ablation. J Vasc Interv Radiol 2020; 31 (10) 1587-1591
  • 58 Ohnishi T, Yasuda I, Nishigaki Y. et al. Intraductal chilled saline perfusion to prevent bile duct injury during percutaneous radiofrequency ablation for hepatocellular carcinoma. J Gastroenterol Hepatol 2008; 23 (8, Pt 2): e410-e415