Semin intervent Radiol 2021; 38(04): 393-396
DOI: 10.1055/s-0041-1735606
Review Article

Principles of Radioembolization

Gajan Sivananthan
1   Division of Interventional Radiology, Department of Radiology, Georgetown Medical School, MedStar Washington Hospital Center, Washington, District of Columbia
,
Nora E. Tabori
1   Division of Interventional Radiology, Department of Radiology, Georgetown Medical School, MedStar Washington Hospital Center, Washington, District of Columbia
› Author Affiliations

Abstract

Radioembolization has become a mainstay therapy in the treatment of primary and secondary liver cancers. This article will specifically discuss a brief history of yttrium treatment as well as an overview of the physical properties of the currently available devices. A discussion of the mechanism of action will be followed by a discussion on patient selection for this treatment.



Publication History

Article published online:
07 October 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Ariel IM. Treatment of inoperable primary pancreatic and liver cancer by the intra-arterial administration of radioactive isotopes (Y90 radiating microspheres). Ann Surg 1965; 162 (02) 267-278
  • 2 Simon N, Warner RR, Baron MG, Rudavsky AZ. Intra-arterial irradiation of carcinoid tumors of the liver. Am J Roentgenol Radium Ther Nucl Med 1968; 102 (03) 552-561
  • 3 Herba MJ, Illescas FF, Thirlwell MP. et al. Hepatic malignancies: improved treatment with intraarterial Y-90. Radiology 1988; 169 (02) 311-314
  • 4 Mantravadi RV, Spigos DG, Tan WS, Felix EL. Intraarterial yttrium 90 in the treatment of hepatic malignancy. Radiology 1982; 142 (03) 783-786
  • 5 Grady ED. Internal radiation therapy of hepatic cancer. Dis Colon Rectum 1979; 22 (06) 371-375
  • 6 Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys 2002; 53 (04) 810-821
  • 7 Archer SG, Gray BN. Vascularization of small liver metastases. Br J Surg 1989; 76 (06) 545-548
  • 8 Murthy R, Nunez R, Szklaruk J. et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics 2005; 25 (1, Suppl 1): S41-S55
  • 9 Garin E, Lenoir L, Rolland Y. et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med 2012; 53 (02) 255-263
  • 10 Garin E, Tselikas L, Guiu B. et al; DOSISPHERE-01 Study Group. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6 (01) 17-29
  • 11 Vouche M, Habib A, Ward TJ. et al. Unresectable solitary hepatocellular carcinoma not amenable to radiofrequency ablation: multicenter radiology-pathology correlation and survival of radiation segmentectomy. Hepatology 2014; 60 (01) 192-201
  • 12 Padia SA, Johnson GE, Horton KJ. et al. Segmental yttrium-90 radioembolization versus segmental chemoembolization for localized hepatocellular carcinoma: results of a single-center, retrospective, propensity score-matched study. J Vasc Interv Radiol 2017; 28 (06) 777-785.e1
  • 13 Lewandowski RJ, Gabr A, Abouchaleh N. et al. Radiation segmentectomy: potential curative therapy for early hepatocellular carcinoma. Radiology 2018; 287 (03) 1050-1058
  • 14 Salem R, Johnson GE, Kim E. et al. Yttrium-90 radioembolization for the treatment of solitary, unresectable hepatocellular carcinoma: the LEGACY study. Hepatology 2021; ( epub ahead of print)
  • 15 Gabr A, Riaz A, Johnson GE. et al. Correlation of Y90-absorbed radiation dose to pathological necrosis in hepatocellular carcinoma: confirmatory multicenter analysis in 45 explants. Eur J Nucl Med Mol Imaging 2021; 48 (02) 580-583
  • 16 Labgaa I, Tabrizian P, Titano J. et al. Feasibility and safety of liver transplantation or resection after transarterial radioembolization with yttrium-90 for unresectable hepatocellular carcinoma. HPB (Oxford) 2019; 21 (11) 1497-1504
  • 17 Gabr A, Kulik L, Mouli S. et al. Liver transplantation following yttrium-90 radioembolization: 15-year experience in 207-patient cohort. Hepatology 2021; 73 (03) 998-1010
  • 18 Gibbs P, Heinemann V, Sharma NK. et al; SIRFLOX and FOXFIRE Global Trial Investigators. Effect of primary tumor side on survival outcomes in untreated patients with metastatic colorectal cancer when selective internal radiation therapy is added to chemotherapy: combined analysis of two randomized controlled studies. Clin Colorectal Cancer 2018; 17 (04) e617-e629
  • 19 Kennedy A, Cohn M, Coldwell DM. et al. Updated survival outcomes and analysis of long-term survivors from the MORE study on safety and efficacy of radioembolization in patients with unresectable colorectal cancer liver metastases. J Gastrointest Oncol 2017; 8 (04) 614-624 [ erratum in: J Gastrointest Oncol 2018;9(2):E13–E14. PMID: 28890810; PMCID: PMC5582033]
  • 20 Dabrowiecki A, Sankhla T, Shinn K. et al. Impact of genomic mutation and timing of Y90 radioembolization in colorectal liver metastases. Cardiovasc Intervent Radiol 2020; 43 (07) 1006-1014