CC BY-NC-ND 4.0 · Journal of Health and Allied Sciences NU 2022; 12(02): 208-211
DOI: 10.1055/s-0041-1736284
Review Article

Current Concepts of Surface Topography of Implants: A Review

Raksha Potdar
1   Department of Periodontics, AB Shetty Memorial Institute of Dental Sciences, Mangalore, Karnataka, India
,
Amitha Ramesh
1   Department of Periodontics, AB Shetty Memorial Institute of Dental Sciences, Mangalore, Karnataka, India
› Author Affiliations

Abstract

Both the rate of osseointegration and its extent depend upon the characteristics of the implant surface.[1] [2] [3] [4] [5] Depending on the surface of the implant determination of implant–bone contact area, the rate of bone formation around the implant can be done.[6] Hence, the implant surface plays an important part in multiple ways in the osseointegration process.



Publication History

Article published online:
10 November 2021

© 2021. Nitte (Deemed to be University). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Cooper LF. Biologic determinants of bone formation for osseointegration: clues for future clinical improvements. J Prosthet Dent 1998; 80 (04) 439-449
  • 2 Nanci A, Wuest JD, Peru L. et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res 1998; 40 (02) 324-335
  • 3 Boyan BD, Schwartz Z, Hambleton JC. Response of bone and cartilage cells to biomaterials in vivo and in vitro. J Oral Implantol 1993; 19 (02) 116-122
  • 4 Schwartz Z, Swain LD, Marshall T. et al. Modulation of matrix vesicle enzyme activity and phosphatidylserine content by ceramic implant materials during endosteal bone healing. Calcif Tissue Int 1992; 51 (06) 429-437
  • 5 Stanford CM, Johnson GK, Fakhry A, Gratton D, Mellonig JT, Wanger W. Outcomes of a fluoride modified implant one year after loading in the posterior-maxilla when placed with the osteotome surgical technique. Appl Osseointegr Res 2006; 5: 50-55
  • 6 Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007; 23 (07) 844-854
  • 7 Masuda T, Salvi GE, Offenbacher S, Felton DA, Cooper LF. Cell and matrix reactions at titanium implants in surgically prepared rat tibiae. Int J Oral Maxillofac Implants 1997; 12 (04) 472-485
  • 8 Meyer U, Joos U, Mythili J. et al. Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials 2004; 25 (10) 1959-1967
  • 9 Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 2003; 14 (03) 251-262
  • 10 Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981; 52 (02) 155-170
  • 11 Becker W, Becker BE, Ricci A. et al. A prospective multicenter clinical trial comparing one- and two-stage titanium screw-shaped fixtures with one-stage plasma-sprayed solid-screw fixtures. Clin Implant Dent Relat Res 2000; 2 (03) 159-165
  • 12 Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res 1995; 6 (01) 24-30
  • 13 Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res 1998; 9 (01) 11-19
  • 14 Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991; 25 (07) 889-902
  • 15 Gotfredsen K, Wennerberg A, Johansson C, Skovgaard LT, Hjørting-Hansen E. Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. J Biomed Mater Res 1995; 29 (10) 1223-1231
  • 16 Hansson S, Norton M. The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model. J Biomech 1999; 32 (08) 829-836
  • 17 Testori T, Wiseman L, Woolfe S, Porter SS. A prospective multicenter clinical study of the Osseotite implant: four-year interim report. Int J Oral Maxillofac Implants 2001; 16 (02) 193-200
  • 18 Conner KA, Sabatini R, Mealey BL, Takacs VJ, Mills MP, Cochran DL. Guided bone regeneration around titanium plasma-sprayed, acid-etched, and hydroxyapatite-coated implants in the canine model. J Periodontol 2003; 74 (05) 658-668
  • 19 Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 1998; 40 (01) 1-11
  • 20 Esposito M, Coulthard P, Thomsen P, Worthington HV. Interventions for replacing missing teeth: different types of dental implants. Cochrane Database Syst Rev 2005; (01) CD003815
  • 21 Brett PM, Harle J, Salih V. et al. Roughness response genes in osteoblasts. Bone 2004; 35 (01) 124-133
  • 22 Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc'h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000; 82 (04) 457-476
  • 23 Browne M, Gregson PJ. Effect of mechanical surface pretreatment on metal ion release. Biomaterials 2000; 21 (04) 385-392
  • 24 Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 2003; 24 (02) 263-273
  • 25 Ivanoff CJ, Hallgren C, Widmark G, Sennerby L, Wennerberg A. Histologic evaluation of the bone integration of TiO(2) blasted and turned titanium microimplants in humans. Clin Oral Implants Res 2001; 12 (02) 128-134
  • 26 Novaes Jr AB, Souza SL, de Oliveira PT, Souza AM. Histomorphometric analysis of the bone-implant contact obtained with 4 different implant surface treatments placed side by side in the dog mandible. Int J Oral Maxillofac Implants 2002; 17 (03) 377-383
  • 27 Piattelli M, Scarano A, Paolantonio M, Iezzi G, Petrone G, Piattelli A. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. J Oral Implantol 2002; 28 (01) 2-8
  • 28 Müeller WD, Gross U, Fritz T. et al. Evaluation of the interface between bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles. Clin Oral Implants Res 2003; 14 (03) 349-356
  • 29 Massaro C, Rotolo P, De Riccardis F. et al. Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. J Mater Sci Mater Med 2002; 13 (06) 535-548
  • 30 Zinger O, Anselme K, Denzer A. et al. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 2004; 25 (14) 2695-2711
  • 31 Park JY, Davies JE. Red blood cell and platelet interactions with titanium implant surfaces. Clin Oral Implants Res 2000; 11 (06) 530-539
  • 32 Ellingsen JE. Pre-treatment of titanium implants with fluoride improves their retention in bone. J Mater Sci Mater Med 1995; 6 (12) 749-753
  • 33 Ellingsen JE, Johansson CB, Wennerberg A, Holmén A. Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants 2004; 19 (05) 659-666
  • 34 Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998; 11 (05) 391-401
  • 35 Trisi P, Lazzara R, Rao W, Rebaudi A. Bone-implant contact and bone quality: evaluation of expected and actual bone contact on machined and osseotite implant surfaces. Int J Periodontics Restorative Dent 2002; 22 (06) 535-545
  • 36 Novaes Jr AB, Papalexiou V, Grisi MF, Souza SS, Taba Jr M, Kajiwara JK. Influence of implant microstructure on the osseointegration of immediate implants placed in periodontally infected sites. A histomorphometric study in dogs. Clin Oral Implants Res 2004; 15 (01) 34-43
  • 37 Papalexiou V, Novaes Jr AB, Grisi MF, Souza SS, Taba Jr M, Kajiwara JK. Influence of implant microstructure on the dynamics of bone healing around immediate implants placed into periodontally infected sites. A confocal laser scanning microscopic study. Clin Oral Implants Res 2004; 15 (01) 44-53
  • 38 Yokoyama K, Ichikawa T, Murakami H, Miyamoto Y, Asaoka K. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials 2002; 23 (12) 2459-2465
  • 39 Sul YT, Johansson CB, Röser K, Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials 2002; 23 (08) 1809-1817
  • 40 Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Implants Res 2002; 13 (03) 252-259
  • 41 Rocci A, Martignoni M, Gottlow J. Immediate loading of Brånemark System TiUnite and machined-surface implants in the posterior mandible: a randomized open-ended clinical trial. Clin Implant Dent Relat Res 2003; 5 (Suppl. 01) 57-63
  • 42 Jungner M, Lundqvist P, Lundgren S. Oxidized titanium implants (Nobel Biocare TiUnite) compared with turned titanium implants (Nobel Biocare mark III) with respect to implant failure in a group of consecutive patients treated with early functional loading and two-stage protocol. Clin Oral Implants Res 2005; 16 (03) 308-312