CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2023; 58(02): 179-190
DOI: 10.1055/s-0041-1736569
Artigo de Atualização
Oncology

Atualização na avaliação por imagens dos sarcomas ósseos e das partes moles

Article in several languages: português | English
1   Grupo de Oncologia Ortopédica, Hospital Santa Izabel, Santa Casa de Misericórdia da Bahia, Salvador, BA, Brasil
,
2   Serviço de Traumato-ortopedia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
,
3   Serviço de Medicina Nuclear, Hospital Santa Izabel, Santa Casa da Misericórdia da Bahia, Salvador, BA, Brasil
,
4   Departamento de Radiologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
› Author Affiliations
Suporte Financeiro Não houve suporte financeiro de fontes públicas, comerciais, ou sem fins lucrativos.

Resumo

A evolução na avaliação por imagens dos sarcomas musculoesqueléticos contribuiu para melhora significativa no prognóstico e na sobrevida dos portadores destas neoplasias. A caracterização precisa destas lesões, mediante utilização das modalidades de imagem mais adequadas a cada condição clínica apresentada, é de suma importância no delineamento da abordagem terapêutica a ser instituída, com impacto direto sobre os desfechos clínicos. O presente artigo busca atualizar o leitor a propósito das metodologias de imagem no contexto da avaliação local e sistêmica dos sarcomas ósseos e das partes moles.

* Trabalho desenvolvido no Grupo de Oncologia Ortopédica, Hospital Santa Izabel, Santa Casa de Misericórdia da Bahia, Salvador, BA, Brasil e no Serviço de Traumato-ortopedia do Hospital Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.




Publication History

Received: 16 September 2020

Accepted: 08 July 2021

Article published online:
11 November 2021

© 2021. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Hwang S, Panicek DM. The evolution of musculoskeletal tumor imaging. Radiol Clin North Am 2009; 47 (03) 435-453
  • 2 Ilaslan H, Sundaram M. Advances in musculoskeletal tumor imaging. Orthop Clin North Am 2006; 37 (03) 375-391
  • 3 Caracciolo JT, Letson GD. Radiologic approach to bone and soft tissue sarcomas. Surg Clin North Am 2016; 96 (05) 963-976
  • 4 Blay JY, Sleijfer S, Schöffski P. et al. International expert opinion on patient-tailored management of soft tissue sarcomas. Eur J Cancer 2014; 50 (04) 679-689
  • 5 Klein MJ. Radiographic correlation in orthopedic pathology. Adv Anat Pathol 2005; 12 (04) 155-179
  • 6 Guedes A, Oliveira MBR, Costa FM, Melo AS. Updating on Bone and Soft Tissue Sarcomas Staging. [Published online: 2020–09–30] Rev Bras Ortop. Available from: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0040-1710331?articleLanguage=pt
  • 7 Bestic JM, Wessell DE, Beaman FD. et al. American College of Radiology ACR. Appropriateness Criteria®. Primary Bone Tumors (revised 2019). Reston, VA: American College of Radiology. Available from: arch.acr.org/docs/69421/Narrative/
  • 8 Pennington Z, Ahmed AK, Cottrill E, Westbroek EM, Goodwin ML, Sciubba DM. Systematic review on the utility of magnetic resonance imaging for operative management and follow-up for primary sarcoma-lessons from extremity sarcomas. Ann Transl Med 2019; 7 (10) 225
  • 9 Kransdorf MJ, Bridges MD. Current developments and recent advances in musculoskeletal tumor imaging. Semin Musculoskelet Radiol 2013; 17 (02) 145-155
  • 10 Miller BJ, Avedian RS, Rajani R. et al Musculoskeletal Oncology Research Initiative. What is the use of imaging before referral to an orthopaedic oncologist? A prospective, multicenter investigation. Clin Orthop Relat Res 2015; 473 (03) 868-874
  • 11 Nystrom LM, Reimer NB, Dean CW, Bush CH, Scarborough MT, Gibbs Jr CP. Evaluation of imaging utilization prior to referral of musculoskeletal tumors: a prospective study. J Bone Joint Surg Am 2015; 97 (01) 10-15
  • 12 Costa FM, Martins PH, Canella C, Lopes FPPL. Multiparametric MR imaging of soft tissue tumors and pseudotumors. Magn Reson Imaging Clin N Am 2018; 26 (04) 543-558
  • 13 Stacy GS, Mahal RS, Peabody TD. Staging of bone tumors: a review with illustrative examples. AJR Am J Roentgenol 2006; 186 (04) 967-976
  • 14 Errani C, Kreshak J, Ruggieri P, Alberghini M, Picci P, Vanel D. Imaging of bone tumors for the musculoskeletal oncologic surgeon. Eur J Radiol 2013; 82 (12) 2083-2091
  • 15 Greenspan A, Jundt G, Remagen W. Differential diagnosis in orthopaedic oncology. 2nd ed.. Philadelphia: Lippincott Williams & Wilkins; 2006
  • 16 Fadul D, Fayad LM. Advanced modalities for the imaging of sarcoma. Surg Clin North Am 2008; 88 (03) 521-537 , vi
  • 17 Sherman CE, O'Connor MI. Musculoskeletal tumor imaging: an orthopedic oncologist perspective. Semin Musculoskelet Radiol 2013; 17 (02) 221-226
  • 18 Jordan DW, Becker M, Brady S. et al. American College of Radiology ACR. Appropriateness Criteria®. Radiation Dose Assessment Introduction (revised 2020). Reston, VA: American College of Radiology. Available from: https://www.acr.org/-/media/ACR/Files/Appropriateness-Criteria/RadiationDoseAssessmentIntro.pdf
  • 19 Mavrogenis AF, Angelini A, Vottis C. et al. State-of-the-art approach for bone sarcomas. Eur J Orthop Surg Traumatol 2015; 25 (01) 5-15
  • 20 Musculoskeletal Tumor Society. Systematic literature review on the use of imaging prior to referral to a musculoskeletal oncologist. Rosemont: Musculoskeletal Tumor Society; 2018
  • 21 Miller BJ. Use of imaging prior to referral to a musculoskeletal oncologist. J Am Acad Orthop Surg 2019; 27 (22) e1001-e1008
  • 22 Mothiram U, Brennan PC, Lewis SJ, Moran B, Robinson J. Digital radiography exposure indices: A review. J Med Radiat Sci 2014; 61 (02) 112-118
  • 23 Nichols RE, Dixon LB. Radiographic analysis of solitary bone lesions. Radiol Clin North Am 2011; 49 (06) 1095-1114 , v
  • 24 Guedes A, Baptista PPR, Santili C, Yonamine ES, Garcia HRP, Martinez EC. Wide resection and fibular transposition in the treatment of GCT on radius distal end. Acta Ortop Bras 2009; 17 (03) 171-181
  • 25 Patel DB, Matcuk Jr GR. Imaging of soft tissue sarcomas. Linchuang Zhongliuxue Zazhi 2018; 7 (04) 35
  • 26 Peabody TD, Gibbs Jr CP, Simon MA. Evaluation and staging of musculoskeletal neoplasms. J Bone Joint Surg Am 1998; 80 (08) 1204-1218
  • 27 Oliveira MB, Mello FC, Paschoal ME. The relationship between lung cancer histology and the clinicopathological characteristics of bone metastases. Lung Cancer 2016; 96 (01) 19-24
  • 28 van der Linden YM, Kroon HM, Dijkstra SP. et al; Dutch Bone Metastasis Study Group. Simple radiographic parameter predicts fracturing in metastatic femoral bone lesions: results from a randomised trial. Radiother Oncol 2003; 69 (01) 21-31
  • 29 Colleran G, Madewell J, Foran P, Shelly M, O'Sullivan PJ. Imaging of soft tissue and osseous sarcomas of the extremities. Semin Ultrasound CT MR 2011; 32 (05) 442-455
  • 30 Mathur M, Jones JR, Weinreb JC. Gadolinium deposition and nephrogenic systemic fibrosis: A radiologist's primer. Radiographics 2020; 40 (01) 153-162
  • 31 Shankar PR, Davenport MS. Risk of nephrogenic systemic fibrosis in stage 4 and 5 chronic kidney disease following group II gadolinium-based contrast agent administration: Subanalysis by chronic kidney disease stage. Radiology 2020; 297 (02) 447-448
  • 32 Costa FM, Canella C, Gasparetto E. Advanced magnetic resonance imaging techniques in the evaluation of musculoskeletal tumors. Radiol Clin North Am 2011; 49 (06) 1325-1358 , vii–viii
  • 33 Harry VN, Semple SI, Parkin DE, Gilbert FJ. Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol 2010; 11 (01) 92-102
  • 34 Padhani AR, Miles KA. Multiparametric imaging of tumor response to therapy. Radiology 2010; 256 (02) 348-364
  • 35 Hamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 2007; 25 (26) 4104-4109
  • 36 Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007; 188 (06) 1622-1635
  • 37 Gasparotti R, Pinelli L, Liserre R. New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay. Insights Imaging 2011; 2 (03) 335-347
  • 38 Miwa S, Otsuka T. Practical use of imaging technique for management of bone and soft tissue tumors. J Orthop Sci 2017; 22 (03) 391-400
  • 39 Maki RG, Moraco N, Antonescu CR. et al. Toward better soft tissue sarcoma staging: building on american joint committee on cancer staging systems versions 6 and 7. Ann Surg Oncol 2013; 20 (11) 3377-3383
  • 40 Callegaro D, Miceli R, Bonvalot S. et al. Development and external validation of two nomograms to predict overall survival and occurrence of distant metastases in adults after surgical resection of localised soft-tissue sarcomas of the extremities: a retrospective analysis. Lancet Oncol 2016; 17 (05) 671-680
  • 41 Ferrari A, Dirksen U, Bielack S. Sarcomas of soft tissue and bone. Prog Tumor Res 2016; 43: 128-141
  • 42 Kneisl JS, Rosenberg AE, Anderson PM. et al. Part VIII Bone. In: Amin MB, Edge S, Greene F. et al, editors. AJCC Cancer Staging Manual. 8th ed.. Switzerland: Springer; 2017: 469-486
  • 43 Steffner RJ, Jang ES. Staging of bone and soft-tissue sarcomas. J Am Acad Orthop Surg 2018; 26 (13) e269-e278
  • 44 Cates JM. Comparison of the AJCC, MSTS, and modified Spanier systems for clinical and pathologic staging of osteosarcoma. Am J Surg Pathol 2017; 41 (03) 405-413
  • 45 Chang CY, Gill CM, Joseph Simeone F. et al. Comparison of the diagnostic accuracy of 99 m-Tc-MDP bone scintigraphy and 18 F-FDG PET/CT for the detection of skeletal metastases. Acta Radiol 2016; 57 (01) 58-65
  • 46 Ell PJ, Gambhir S. Nuclear Medicine in Clinical Diagnosis and Treatment. 3rd edition.. Philadelphia: Churchill Livingstone; 2004
  • 47 McKillop JH, Etcubanas E, Goris ML. The indications for and limitations of bone scintigraphy in osteogenic sarcoma: a review of 55 patients. Cancer 1981; 48 (05) 1133-1138
  • 48 Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol 2014; 43 (11) 1503-1513
  • 49 Pasoglou V, Michoux N, Tombal B, Jamar F, Lecouvet FE. WbMRI to detect bone metastases: Critical review on diagnostic accuracy and comparison to other imaging modalities. Clin Transl Imaging 2015; 3: 141-157
  • 50 Morone M, Bali MA, Tunariu N. et al. Whole-Body MRI: Current applications in oncology. AJR Am J Roentgenol 2017; 209 (06) W336-W349
  • 51 Hochhegger B. Whole-body magnetic resonance imaging: an effective and underutilized technique. Radiol Bras 2015; 48 (03) IX-X
  • 52 Wilhelm T, Stieltjes B, Schlemmer HP. Whole-body-MR-diffusion weighted imaging in oncology. Röfo Fortschr Geb Röntgenstr Nuklearmed 2013; 184 (10) 950-958
  • 53 Jacobs MA, Macura KJ, Zaheer A. et al. Multiparametric whole-body MRI with diffusion-weighted imaging and ADC mapping for the identification of visceral and osseous metastases from solid tumors. Acad Radiol 2018; 25 (11) 1405-1414
  • 54 Barchetti F, Stagnitti A, Megna V. et al. Unenhanced whole-body MRI versus PET-CT for the detection of prostate cancer metastases after primary treatment. Eur Rev Med Pharmacol Sci 2016; 20 (18) 3770-3776
  • 55 Behzadi AH, Raza SI, Carrino JA. et al. Applications of PET/CT and PET/MR Imaging in primary bone malignancies. PET Clin 2018; 13 (04) 623-634
  • 56 Eiber M, Takei T, Souvatzoglou M. et al. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med 2014; 55 (02) 191-197
  • 57 Etchebehere EC, Hobbs BP, Milton DR. et al. Assessing the role of 18F-FDG PET and 18F-FDG PET/CT in the diagnosis of soft tissue musculoskeletal malignancies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2016; 43 (05) 860-870
  • 58 London K, Stege C, Cross S. et al. 18F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors. Pediatr Radiol 2012; 42 (04) 418-430
  • 59 Ehman EC, Johnson GB, Villanueva-Meyer JE. et al. PET/MRI: Where might it replace PET/CT?. J Magn Reson Imaging 2017; 46 (05) 1247-1262
  • 60 Martin O, Schaarschmidt BM, Kirchner J. et al. PET/MRI versus PET/CT for whole-body staging: results from a single-center observational study on 1,003 sequential examinations. J Nucl Med 2020; 61 (08) 1131-1136