Semin Liver Dis 2022; 42(01): 034-047
DOI: 10.1055/s-0041-1739455
Review Article

The Neglected Role of Bile Duct Epithelial Cells in NASH

Massimiliano Cadamuro
1   Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
,
Alberto Lasagni
2   Division of General Medicine, Padua University-Hospital, Padua, Italy
,
Samantha Sarcognato
3   Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
,
Maria Guido
3   Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
4   Department of Medicine (DIMED), University of Padua, Padua, Italy
,
Roberto Fabris
5   Division of Clinica Medica 3, Center for the Study and the Integrated Management of Obesity, Padua University-Hospital, Padua, Italy
,
Mario Strazzabosco
6   Department of Internal Medicine, Digestive Disease Section, Liver Center, Yale University, New Haven, Connecticut
,
Alastair J. Strain
7   School of Biosciences, University of Birmingham, Birmingham, United Kingdom
,
Paolo Simioni
2   Division of General Medicine, Padua University-Hospital, Padua, Italy
4   Department of Medicine (DIMED), University of Padua, Padua, Italy
,
Erica Villa
8   Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, Modena, Italy
,
Luca Fabris
1   Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
2   Division of General Medicine, Padua University-Hospital, Padua, Italy
6   Department of Internal Medicine, Digestive Disease Section, Liver Center, Yale University, New Haven, Connecticut
› Institutsangaben

Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide, and affects 25% of the population in Western countries. NAFLD is the hepatic manifestation of the metabolic syndrome, linked to insulin resistance, which is the common pathogenetic mechanism. In approximately 40% of NAFLD patients, steatosis is associated with necro-inflammation and fibrosis, resulting in nonalcoholic steatohepatitis (NASH), a severe condition that may progress to cirrhosis and liver cancer. Although the hepatocyte represents the main target of the disease, involvement of the bile ducts occurs in a subset of patients with NASH, and is characterized by ductular reaction and activation of the progenitor cell compartment, which incites portal fibrosis and disease progression. We aim to dissect the multiple biological effects that adipokines and metabolic alterations exert on cholangiocytes to derive novel information on the mechanisms driven by insulin resistance, which promote fibro-inflammation and carcinogenesis in NASH.



Publikationsverlauf

Artikel online veröffentlicht:
18. November 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Younossi ZM. Non-alcoholic fatty liver disease—a global public health perspective. J Hepatol 2019; 70 (03) 531-544
  • 2 Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 2019; 16 (07) 411-428
  • 3 Chalasani N, Younossi Z, Lavine JE. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67 (01) 328-357
  • 4 Sanyal AJ, Brunt EM, Kleiner DE. et al. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 2011; 54 (01) 344-353
  • 5 Tilg H, Effenberger M. From NAFLD to MAFLD: when pathophysiology succeeds. Nat Rev Gastroenterol Hepatol 2020; 17 (07) 387-388
  • 6 Egger G, Dixon J. Beyond obesity and lifestyle: a review of 21st century chronic disease determinants. BioMed Res Int 2014; 2014: 731685
  • 7 Wang F, Zhang L, Zhang Y. et al. Meta-analysis on night shift work and risk of metabolic syndrome. Obes Rev 2014; 15 (09) 709-720
  • 8 Leslie WS, Hankey CR, Lean ME. Weight gain as an adverse effect of some commonly prescribed drugs: a systematic review. QJM 2007; 100 (07) 395-404
  • 9 Angulo P, Machado MV, Diehl AM. Fibrosis in nonalcoholic fatty liver disease: mechanisms and clinical implications. Semin Liver Dis 2015; 35 (02) 132-145
  • 10 Ekstedt M, Hagström H, Nasr P. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015; 61 (05) 1547-1554
  • 11 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64 (01) 73-84
  • 12 Hagström H, Nasr P, Ekstedt M. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol 2017; 67 (06) 1265-1273
  • 13 Adams LA, Lymp JF, St Sauver J. et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005; 129 (01) 113-121
  • 14 Stine JG, Wentworth BJ, Zimmet A. et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. Aliment Pharmacol Ther 2018; 48 (07) 696-703
  • 15 Wongjarupong N, Assavapongpaiboon B, Susantitaphong P. et al. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol 2017; 17 (01) 149
  • 16 Moeini A, Sia D, Zhang Z. et al. Mixed hepatocellular cholangiocarcinoma tumors: cholangiolocellular carcinoma is a distinct molecular entity. J Hepatol 2017; 66 (05) 952-961
  • 17 Craig AJ, von Felden J, Garcia-Lezana T, Sarcognato S, Villanueva A. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2020; 17 (03) 139-152
  • 18 Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and regression in NASH. J Hepatol 2018; 68 (02) 238-250
  • 19 Ahima RS. Insulin resistance: cause or consequence of nonalcoholic steatohepatitis?. Gastroenterology 2007; 132 (01) 444-446
  • 20 Siddle K, Hales CN. Hormonal control of adipose tissue lipolysis. Proc Nutr Soc 1975; 34 (03) 233-239
  • 21 Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106 (02) 171-176
  • 22 Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9 (05) 367-377
  • 23 Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 2016; 65 (08) 1049-1061
  • 24 Kasumov T, Li L, Li M. et al. Ceramide as a mediator of non-alcoholic fatty liver disease and associated atherosclerosis. PLoS One 2015; 10 (05) e0126910
  • 25 Hirsova P, Ibrabim SH, Gores GJ, Malhi H. Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J Lipid Res 2016; 57 (10) 1758-1770
  • 26 Zisser A, Ipsen DH, Tveden-Nyborg P. Hepatic stellate cell activation and inactivation in NASH-fibrosis-roles as putative treatment targets?. Biomedicines 2021; 9 (04) 365
  • 27 Zhang C, Klett EL, Coleman RA. Lipid signals and insulin resistance. Clin Lipidol 2013; 8 (06) 659-667
  • 28 Larter CZ, Farrell GC. Insulin resistance, adiponectin, cytokines in NASH: which is the best target to treat?. J Hepatol 2006; 44 (02) 253-261
  • 29 Johnston AM, Pirola L, Van Obberghen E. Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett 2003; 546 (01) 32-36
  • 30 Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454 (7203): 428-435
  • 31 Giovannucci E, Harlan DM, Archer MC. et al. Diabetes and cancer: a consensus report. Diabetes Care 2010; 33 (07) 1674-1685
  • 32 Yokomuro S, Tsuji H, Lunz III JG. et al. Growth control of human biliary epithelial cells by interleukin 6, hepatocyte growth factor, transforming growth factor beta1, and activin A: comparison of a cholangiocarcinoma cell line with primary cultures of non-neoplastic biliary epithelial cells. Hepatology 2000; 32 (01) 26-35
  • 33 Locatelli L, Cadamuro M, Spirlì C. et al. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis. Hepatology 2016; 63 (03) 965-982
  • 34 Bril F, Lomonaco R, Orsak B. et al. Relationship between disease severity, hyperinsulinemia, and impaired insulin clearance in patients with nonalcoholic steatohepatitis. Hepatology 2014; 59 (06) 2178-2187
  • 35 Lesage GD, Marucci L, Alvaro D. et al. Insulin inhibits secretin-induced ductal secretion by activation of PKC alpha and inhibition of PKA activity. Hepatology 2002; 36 (03) 641-651
  • 36 Cusi K, Maezono K, Osman A. et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105 (03) 311-320
  • 37 Zhang J, Zhao Y, Xu C. et al. Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study. Sci Rep 2014; 4: 5832
  • 38 Natarajan SK, Ingham SA, Mohr AM. et al. Saturated free fatty acids induce cholangiocyte lipoapoptosis. Hepatology 2014; 60 (06) 1942-1956
  • 39 Natarajan SK, Stringham BA, Mohr AM. et al. FoxO3 increases miR-34a to cause palmitate-induced cholangiocyte lipoapoptosis. J Lipid Res 2017; 58 (05) 866-875
  • 40 Martínez AK, Glaser SS. Cholangiocyte lipoapoptosis: implications for biliary damage during nonalcoholic fatty liver disease. Hepatology 2014; 60 (06) 1809-1811
  • 41 Kennedy L, Meadows V, Sybenga A. et al. Mast cells promote nonalcoholic fatty liver disease phenotypes and microvesicular steatosis in mice fed a Western diet. Hepatology 2021; 74 (01) 164-182
  • 42 Lewitt MS, Dent MS, Hall K. The insulin-like growth factor system in obesity, insulin resistance and type 2 diabetes mellitus. J Clin Med 2014; 3 (04) 1561-1574
  • 43 Sedlaczek N, Hasilik A, Neuhaus P, Schuppan D, Herbst H. Focal overexpression of insulin-like growth factor 2 by hepatocytes and cholangiocytes in viral liver cirrhosis. Br J Cancer 2003; 88 (05) 733-739
  • 44 Friedrich N, Thuesen B, Jørgensen T. et al. The association between IGF-I and insulin resistance: a general population study in Danish adults. Diabetes Care 2012; 35 (04) 768-773
  • 45 Dichtel LE, Corey KE, Misdraji J. et al. The association between IGF-1 levels and the histologic severity of nonalcoholic fatty liver disease. Clin Transl Gastroenterol 2017; 8 (01) e217
  • 46 Cousin SP, Hügl SR, Wrede CE, Kajio H, Myers Jr MG, Rhodes CJ. Free fatty acid-induced inhibition of glucose and insulin-like growth factor I-induced deoxyribonucleic acid synthesis in the pancreatic beta-cell line INS-1. Endocrinology 2001; 142 (01) 229-240
  • 47 Alisi A, Pampanini V, De Stefanis C. et al. Expression of insulin-like growth factor I and its receptor in the liver of children with biopsy-proven NAFLD. PLoS One 2018; 13 (07) e0201566
  • 48 Weroha SJ, Haluska P. The insulin-like growth factor system in cancer. Endocrinol Metab Clin North Am 2012; 41 (02) 335-350 , vi
  • 49 Alvaro D, Barbaro B, Franchitto A. et al. Estrogens and insulin-like growth factor 1 modulate neoplastic cell growth in human cholangiocarcinoma. Am J Pathol 2006; 169 (03) 877-888
  • 50 Saengboonmee C, Seubwai W, Lert-Itthiporn W, Sanlung T, Wongkham S. Association of diabetes mellitus and cholangiocarcinoma: update of evidence and the effects of antidiabetic medication. Can J Diabetes 2021; 45 (03) 282-290
  • 51 Marzioni M, Alpini G, Saccomanno S. et al. Glucagon-like peptide-1 and its receptor agonist exendin-4 modulate cholangiocyte adaptive response to cholestasis. Gastroenterology 2007; 133 (01) 244-255
  • 52 Chen BD, Zhao WC, Dong JD, Sima H. Expression of GLP-1R protein and its clinical role in intrahepatic cholangiocarcinoma tissues. Mol Biol Rep 2014; 41 (07) 4313-4320
  • 53 Chen L, Wu N, Kennedy L. et al. Inhibition of secretin/secretin receptor axis ameliorates non-alcoholic fatty liver disease phenotypes. Hepatology 2021; In press
  • 54 El Husseny MWA, Mamdouh M, Shaban S. et al. Adipokines: potential therapeutic targets for vascular dysfunction in type II diabetes mellitus and obesity. J Diabetes Res 2017; 2017: 8095926
  • 55 Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 2007; 92 (03) 1023-1033
  • 56 Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 2003; 278 (46) 45777-45784
  • 57 Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev 2018; 39: 151-158
  • 58 Hui JM, Hodge A, Farrell GC, Kench JG, Kriketos A, George J. Beyond insulin resistance in NASH: TNF-alpha or adiponectin?. Hepatology 2004; 40 (01) 46-54
  • 59 Bugianesi E, Pagotto U, Manini R. et al. Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity. J Clin Endocrinol Metab 2005; 90 (06) 3498-3504
  • 60 Polyzos SA, Toulis KA, Goulis DG, Zavos C, Kountouras J. Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism 2011; 60 (03) 313-326
  • 61 Moschen AR, Molnar C, Wolf AM. et al. Effects of weight loss induced by bariatric surgery on hepatic adipocytokine expression. J Hepatol 2009; 51 (04) 765-777
  • 62 La Cava A, Matarese G. The weight of leptin in immunity. Nat Rev Immunol 2004; 4 (05) 371-379
  • 63 Ikejima K, Okumura K, Kon K, Takei Y, Sato N. Role of adipocytokines in hepatic fibrogenesis. J Gastroenterol Hepatol 2007; 22 (Suppl. 01) S87-S92
  • 64 Shen J, Sakaida I, Uchida K, Terai S, Okita K. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci 2005; 77 (13) 1502-1515
  • 65 Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism 2016; 65 (08) 1062-1079
  • 66 Izzo P, Izzo S, DI Cello P. et al. Role of leptin in neoplastic and biliary tree disease. In Vivo 2020; 34 (05) 2485-2490
  • 67 Fava G, Alpini G, Rychlicki C. et al. Leptin enhances cholangiocarcinoma cell growth. Cancer Res 2008; 68 (16) 6752-6761
  • 68 Yan C, Yang Q, Shen HM, Spitsbergen JM, Gong Z. Chronically high level of tgfb1a induction causes both hepatocellular carcinoma and cholangiocarcinoma via a dominant Erk pathway in zebrafish. Oncotarget 2017; 8 (44) 77096-77109
  • 69 Peng C, Sun Z, Li O. et al. Leptin stimulates the epithelial–mesenchymal transition and pro–angiogenic capability of cholangiocarcinoma cells through the miR–122/PKM2 axis. Int J Oncol 2019; 55 (01) 298-308
  • 70 Kennedy L, Hargrove L, Demieville J. et al. Knockout of l-histidine decarboxylase prevents cholangiocyte damage and hepatic fibrosis in mice subjected to high-fat diet feeding via disrupted histamine/leptin signaling. Am J Pathol 2018; 188 (03) 600-615
  • 71 Sorrentino P, Tarantino G, Perrella A, Micheli P, Perrella O, Conca P. A clinical-morphological study on cholestatic presentation of nonalcoholic fatty liver disease. Dig Dis Sci 2005; 50 (06) 1130-1135
  • 72 Híndi M, Levy C, Couto CA, Bejarano P, Mendes F. Primary biliary cirrhosis is more severe in overweight patients. J Clin Gastroenterol 2013; 47 (03) e28-e32
  • 73 Berzigotti A, Garcia-Tsao G, Bosch J. et al; Portal Hypertension Collaborative Group. Obesity is an independent risk factor for clinical decompensation in patients with cirrhosis. Hepatology 2011; 54 (02) 555-561
  • 74 Kinoshita M, Kubo S, Tanaka S. et al. The association between non-alcoholic steatohepatitis and intrahepatic cholangiocarcinoma: a hospital based case-control study. J Surg Oncol 2016; 113 (07) 779-783
  • 75 Wang Y, Kory N, BasuRay S, Cohen JC, Hobbs HH. PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatology 2019; 69 (06) 2427-2441
  • 76 Romeo S, Kozlitina J, Xing C. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40 (12) 1461-1465
  • 77 Valenti L, Al-Serri A, Daly AK. et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51 (04) 1209-1217
  • 78 Ruiz JN, Kröner PT, Wijarnpreecha K, Corral JE, Harnois DM, Lukens FJ. Increased odds of cholangiocarcinoma in Hispanics: results of a nationwide analysis. Eur J Gastroenterol Hepatol 2020; 32 (01) 116-119
  • 79 Hassan MM, Kaseb A, Etzel CJ. et al. Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction. Mol Carcinog 2013; 52 (Suppl. 01) E139-E147
  • 80 Bosch DE, Yeh MM. Primary sclerosing cholangitis is protective against nonalcoholic fatty liver disease in inflammatory bowel disease. Hum Pathol 2017; 69: 55-62
  • 81 Liu JZ, Hov JR, Folseraas T. et al; UK-PSCSC Consortium, International PSC Study Group, International IBD Genetics Consortium. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet 2013; 45 (06) 670-675
  • 82 Sabino J, Vieira-Silva S, Machiels K. et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut 2016; 65 (10) 1681-1689
  • 83 Nobili V, Marcellini M, Devito R. et al. NAFLD in children: a prospective clinical-pathological study and effect of lifestyle advice. Hepatology 2006; 44 (02) 458-465
  • 84 Younossi ZM, Stepanova M, Rafiq N. et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology 2011; 53 (06) 1874-1882
  • 85 Desmet VJ. Ductal plates in hepatic ductular reactions. Hypothesis and implications. I. Types of ductular reaction reconsidered. Virchows Arch 2011; 458 (03) 251-259
  • 86 Richardson MM, Jonsson JR, Powell EE. et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 2007; 133 (01) 80-90
  • 87 Farrell GC, Robertson GR, Leclercq I, Horsmans Y. Liver regeneration in obese mice with fatty livers: does the impairment have relevance for other types of fatty liver disease?. Hepatology 2002; 35 (03) 731-732
  • 88 Leclercq IA, Field J, Farrell GC. Leptin-specific mechanisms for impaired liver regeneration in ob/ob mice after toxic injury. Gastroenterology 2003; 124 (05) 1451-1464
  • 89 DeAngelis RA, Markiewski MM, Taub R, Lambris JD. A high-fat diet impairs liver regeneration in C57BL/6 mice through overexpression of the NF-kappaB inhibitor, IkappaBalpha. Hepatology 2005; 42 (05) 1148-1157
  • 90 Roskams T, Yang SQ, Koteish A. et al. Oxidative stress and oval cell accumulation in mice and humans with alcoholic and nonalcoholic fatty liver disease. Am J Pathol 2003; 163 (04) 1301-1311
  • 91 Svegliati-Baroni G, Faraci G, Fabris L. et al. Insulin resistance and necroinflammation drives ductular reaction and epithelial-mesenchymal transition in chronic hepatitis C. Gut 2011; 60 (01) 108-115
  • 92 Gadd VL, Skoien R, Powell EE. et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 2014; 59 (04) 1393-1405
  • 93 Carotti S, Vespasiani-Gentilucci U, Perrone G, Picardi A, Morini S. Portal inflammation during NAFLD is frequent and associated with the early phases of putative hepatic progenitor cell activation. J Clin Pathol 2015; 68 (11) 883-890
  • 94 Nobili V, Carpino G, Alisi A. et al. Hepatic progenitor cells activation, fibrosis, and adipokines production in pediatric nonalcoholic fatty liver disease. Hepatology 2012; 56 (06) 2142-2153
  • 95 Nobili V, Parkes J, Bottazzo G. et al. Performance of ELF serum markers in predicting fibrosis stage in pediatric non-alcoholic fatty liver disease. Gastroenterology 2009; 136 (01) 160-167
  • 96 Tsochatzis EA, Papatheodoridis GV, Archimandritis AJ. Adipokines in nonalcoholic steatohepatitis: from pathogenesis to implications in diagnosis and therapy. Mediators Inflamm 2009; 2009: 831670
  • 97 Miura K, Seki E, Ohnishi H, Brenner DA. Role of toll-like receptors and their downstream molecules in the development of nonalcoholic fatty liver disease. Gastroenterol Res Pract 2010; 2010: 362847
  • 98 Brun P, Castagliuolo I, Di Leo V. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2007; 292 (02) G518-G525
  • 99 Xu T, Du Y, Fang XB. et al. New insights into Nod-like receptors (NLRs) in liver diseases. Int J Physiol Pathophysiol Pharmacol 2018; 10 (01) 1-16
  • 100 Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 2019; 16 (05) 269-281
  • 101 Haukeland JW, Damås JK, Konopski Z. et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol 2006; 44 (06) 1167-1174
  • 102 Hargrove L, Kennedy L, Demieville J. et al. Bile duct ligation-induced biliary hyperplasia, hepatic injury, and fibrosis are reduced in mast cell-deficient KitW-sh mice. Hepatology 2017; 65 (06) 1991-2004
  • 103 Yang P, Wang Y, Tang W. et al. Western diet induces severe nonalcoholic steatohepatitis, ductular reaction, and hepatic fibrosis in liver CGI-58 knockout mice. Sci Rep 2020; 10 (01) 4701
  • 104 Charlton M, Krishnan A, Viker K. et al. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol 2011; 301 (05) G825-G834
  • 105 Tandra S, Yeh MM, Brunt EM. et al. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J Hepatol 2011; 55 (03) 654-659
  • 106 Hsu LC, Chang WC, Hiraoka L, Hsieh CL. Molecular cloning, genomic organization, and chromosomal localization of an additional human aldehyde dehydrogenase gene, ALDH6. Genomics 1994; 24 (02) 333-341
  • 107 MacDonald GA, Bridle KR, Ward PJ. et al. Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol 2001; 16 (06) 599-606
  • 108 Fromenty B, Berson A, Pessayre D. Microvesicular steatosis and steatohepatitis: role of mitochondrial dysfunction and lipid peroxidation. J Hepatol 1997; 26 (Suppl. 01) 13-22
  • 109 Vega-Badillo J, Gutiérrez-Vidal R, Hernández-Pérez HA. et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int 2016; 36 (09) 1383-1391
  • 110 Azzimato V, Jager J, Chen P. et al. Liver macrophages inhibit the endogenous antioxidant response in obesity-associated insulin resistance. Sci Transl Med 2020; 12 (532) eaaw9709
  • 111 Lombardo J, Broadwater D, Collins R, Cebe K, Brady R, Harrison S. Hepatic mast cell concentration directly correlates to stage of fibrosis in NASH. Hum Pathol 2019; 86: 129-135
  • 112 Segovia-Miranda F, Morales-Navarrete H, Kücken M. et al. Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression. Nat Med 2019; 25 (12) 1885-1893
  • 113 Strazzabosco M, Fabris L. Development of the bile ducts: essentials for the clinical hepatologist. J Hepatol 2012; 56 (05) 1159-1170
  • 114 Hirose Y, Itoh T, Miyajima A. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells. Exp Cell Res 2009; 315 (15) 2648-2657
  • 115 Syn WK, Jung Y, Omenetti A. et al. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology 2009; 137 (04) 1478-1488.e8
  • 116 Bruha R, Vitek L, Smid V. Osteopontin—a potential biomarker of advanced liver disease. Ann Hepatol 2020; 19 (04) 344-352
  • 117 Syn WK, Choi SS, Liaskou E. et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology 2011; 53 (01) 106-115
  • 118 Kwon H, Song K, Han C. et al. Inhibition of hedgehog signaling ameliorates hepatic inflammation in mice with nonalcoholic fatty liver disease. Hepatology 2016; 63 (04) 1155-1169
  • 119 Machado MV, Michelotti GA, Pereira TA. et al. Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease. J Hepatol 2015; 63 (04) 962-970
  • 120 Chen P, Luo Q, Huang C. et al. Pathogenesis of non-alcoholic fatty liver disease mediated by YAP. Hepatol Int 2018; 12 (01) 26-36
  • 121 Cadamuro M, Girardi N, Gores GJ, Strazzabosco M, Fabris L. The emerging role of macrophages in chronic cholangiopathies featuring biliary fibrosis: an attractive therapeutic target for orphan diseases. Front Med (Lausanne) 2020; 7: 115
  • 122 Seki E, Park E, Fujimoto J. Toll-like receptor signaling in liver regeneration, fibrosis and carcinogenesis. Hepatol Res 2011; 41 (07) 597-610
  • 123 Miura K, Ohnishi H. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20 (23) 7381-7391
  • 124 Kiziltas S. Toll-like receptors in pathophysiology of liver diseases. World J Hepatol 2016; 8 (32) 1354-1369
  • 125 Farrell GC, Haczeyni F, Chitturi S. Pathogenesis of NASH: how metabolic complications of overnutrition favour lipotoxicity and pro-inflammatory fatty liver disease. Adv Exp Med Biol 2018; 1061: 19-44
  • 126 Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol 2018; 53 (03) 362-376
  • 127 Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci 2019; 76 (01) 99-128
  • 128 Li Z, Lian Y, Wei R. et al. Effects of taraxasterol against ethanol and high-fat diet-induced liver injury by regulating TLR4/MyD88/NF-κB and Nrf2/HO-1 signaling pathways. Life Sci 2020; 262: 118546
  • 129 Vespasiani-Gentilucci U, Carotti S, Perrone G. et al. Hepatic toll-like receptor 4 expression is associated with portal inflammation and fibrosis in patients with NAFLD. Liver Int 2015; 35 (02) 569-581
  • 130 Ge X, Wang L, Li M. et al. Vitamin D/VDR signaling inhibits LPS-induced IFNγ and IL-1β in Oral epithelia by regulating hypoxia-inducible factor-1α signaling pathway. Cell Commun Signal 2019; 17 (01) 18
  • 131 Xia Y, Zhao G, Lin J. et al. 1,25(OH)2D3 and VDR signaling pathways regulate the inhibition of dectin-1 caused by cyclosporine A in response to aspergillus fumigatus in human corneal epithelial cells. PLoS One 2016; 11 (10) e0164717
  • 132 Wang H, Zhang Q, Chai Y. et al. 1,25(OH)2D3 downregulates the toll-like receptor 4-mediated inflammatory pathway and ameliorates liver injury in diabetic rats. J Endocrinol Invest 2015; 38 (10) 1083-1091
  • 133 Borges-Canha M, Neves JS, Mendonça F. et al. The impact of vitamin D in non-alcoholic fatty liver disease: a cross-sectional study in patients with morbid obesity. Diabetes Metab Syndr Obes 2021; 14: 487-495
  • 134 Barchetta I, Carotti S, Labbadia G. et al. Liver vitamin D receptor, CYP2R1, and CYP27A1 expression: relationship with liver histology and vitamin D3 levels in patients with nonalcoholic steatohepatitis or hepatitis C virus. Hepatology 2012; 56 (06) 2180-2187
  • 135 Yu L, Li Y, Grisé A, Wang H. CGI-58: versatile regulator of intracellular lipid droplet homeostasis. Adv Exp Med Biol 2020; 1276: 197-222
  • 136 Youssefian L, Vahidnezhad H, Saeidian AH. et al. Inherited non-alcoholic fatty liver disease and dyslipidemia due to monoallelic ABHD5 mutations. J Hepatol 2019; 71 (02) 366-370
  • 137 Povero D, Feldstein AE. Novel molecular mechanisms in the development of non-alcoholic steatohepatitis. Diabetes Metab J 2016; 40 (01) 1-11
  • 138 Lefere S, Van de Velde F, Hoorens A. et al. Angiopoietin-2 promotes pathological angiogenesis and is a therapeutic target in murine nonalcoholic fatty liver disease. Hepatology 2019; 69 (03) 1087-1104
  • 139 Lei L, Ei Mourabit H, Housset C, Cadoret A, Lemoinne S. Role of angiogenesis in the pathogenesis of NAFLD. J Clin Med 2021; 10 (07) 1338
  • 140 Mariotti V, Fiorotto R, Cadamuro M, Fabris L, Strazzabosco M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep 2021; 3 (03) 100251
  • 141 Siddiqui H, Rawal P, Bihari C, Arora N, Kaur S. Vascular endothelial growth factor promotes proliferation of epithelial cell adhesion molecule-positive cells in nonalcoholic steatohepatitis. J Clin Exp Hepatol 2020; 10 (04) 275-283
  • 142 Saeed WK, Jun DW, Jang K, Koh DH. Necroptosis signaling in liver diseases: an update. Pharmacol Res 2019; 148: 104439
  • 143 Afonso MB, Rodrigues PM, Carvalho T. et al. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clin Sci (Lond) 2015; 129 (08) 721-739
  • 144 Afonso MB, Castro RE, Rodrigues CMP. Processes exacerbating apoptosis in non-alcoholic steatohepatitis. Clin Sci (Lond) 2019; 133 (22) 2245-2264
  • 145 Gautheron J, Vucur M, Reisinger F. et al. A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol Med 2014; 6 (08) 1062-1074
  • 146 Clements O, Eliahoo J, Kim JU, Taylor-Robinson SD, Khan SA. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J Hepatol 2020; 72 (01) 95-103