CC BY-NC-ND 4.0 · Revista Urología Colombiana / Colombian Urology Journal 2022; 31(02): e56-e62
DOI: 10.1055/s-0041-1740591
Original Article | Artículo Original
Pediatric Urology / Urología Pediátrica

Ionizing Radiation Exposure in Children with Vesicoureteral Reflux: Should We Be Alarmed?

Exposición a radiacion ionizante en niños con reflujo vesicoureteral: Debemos preocuparnos?
Nicolas Fernandez
1   Division of Urology, Seattle Children's Hospital, University of Washington, Seattle, WA, United States
,
Luis-Gabriel Villarraga
2   Division of Urology, Hospital San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
,
Julian Chavarriaga
2   Division of Urology, Hospital San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
,
Juan Prada
2   Division of Urology, Hospital San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
,
Valeria Restrepo
2   Division of Urology, Hospital San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
,
Jaime Perez
2   Division of Urology, Hospital San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
3   Department of Urology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
› Author Affiliations
Funding No funding was available for this project.

Abstract

Objectives Ionizing radiation imaging is commonly used for diagnosis and follow up in children with vesicoureteral reflux (VUR). We aim to measure the effective dose (mSv) in patients with VUR.

Methods We reviewed our electronic database of patients under 8-years-old with VUR. Primary endpoint was to calculate the effective radiation dose (ED). Absolute frequencies and percentages were reported for global qualitative variables. This study conducted a logistic regression model to calculate the odds ratio for radiation exposure. Analysis was performed using STATA version 14.0 (StataCorp LLC, College Station, TX, EEUU).

Results A total of 140 patients were found, 97 were assessed for eligibility. We included 59 patients in the final analysis. Mean age was 20 ± 17.9 months, 66% were females. Most cases of VUR were bilateral (44%) and high grade (93.4%). The lowest number of studies per patient was two, with a minimum radiation of 5.7 mSv. The highest radiation was estimated at 20.7 mSv corresponding to a total of five studies. Logistic regression showed that highest grades of VUR and age of first UTI episode were associated with higher ED (OR, 1.7; 95% CI, 0.87-3.31), (OR 1.02; 95% CI 0.97-1.07) respectively. A mean ED for children with VUR was estimated of 5.5 ± 3 mSv/year.

Conclusion In our study, the children with VUR were exposed to 5.5 mSv/year without counting the natural background radiation, which is alarming, and we believe should raise awareness worldwide in how we are unnecessarily diagnosing indolent VUR cases and following patients.

Resumen

Objetivos La imagenología por radiación ionizante es una herramienta usada frecuentemente para el diagnóstico y seguimiento de pacientes con reflujo vesicoureteral (RVU). El objetivo del presente trabajo es calcular la dosis estimada en milisieverts (mSv) de pacientes con RVU.

Métodos Se realizó una revisión retrospectiva de todos los pacientes menores de 8 años con RVU. El objetivo principal fue calcular la dosis de radiación efectiva recibida por los pacientes con base en los estudios imagenológicos realizados hasta el momento de la revisión de la base de datos. Las frecuencias y porcentajes fueron reportados para las variables cualitativas. Se realizó una regresión logística para calcular la asociación de factores de riesgo con la exposición a radiación. El análisis estadístico fue realizado con el programa STATA versión 14.0 (StataCorp LLC, College Station, TX, EEUU).

Resultados Se identificaron 140 patientes, de los cuales 97 fueron evaluados para coprobar su elegibilidad. En total, 59 pacientes fueron incluidos para el análisis final. La edad promedio de los pacientes fue de 20 ± 1,.9 meses, y 66% eran mujeres. La mayoría de casos fueron bilaterales (44%) y de alto grado (93,4%). El menor número de estudios realizados por paciente fue 2, con una dosis mínima de radiación acumulada de 5,7 mSv. La máxima radiación acumulada fue de 20,7 mSv, correspondiente a un total de 5 estudios. La regresión logística demostró que altos grados de reflujo y la edad a la cual tuvieron la primera infección se asociaban con mayores dosis de radiación efectiva (razón de probabilidades [RP]: 1.7; intervalo de confianza del 95% [IC95%]: 0,87–3,31), (RP: 1,02; IC95%: 0,97–1,07), respectivamente. Estimamos una dosis efectiva de radiación de 5,5 ± 3 mSv/año en nuestra población.

Conclusión Nuestro estudio demuestra que pacientes con reflujo son expuestos a un promedio de 5,5 mSv/año sin contar la radiación de base a la que se exponen todos los humanos anualmente, lo cual resulta alarmante. Esto debe generar introspección al momento de evaluar pacientes con reflujo y evitar efectos a largo y mediano plazos.

Author Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Nicolas Fernandez, Luis Villarraga and Julian Chavarriaga. The first draft of the manuscript was written by Nicolas Fernandez, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.


Ethical Statement

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.




Publication History

Received: 27 August 2020

Accepted: 19 August 2021

Article published online:
21 June 2022

© 2022. Sociedad Colombiana de Urología. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Schauer DA, Linton OW. NCRP Report No. 160, Ionizing Radiation Exposure of the Population of the United States, medical exposure–are we doing less with more, and is there a role for health physicists?. Health Phys 2009; 97 (01) 1-5 DOI: 10.1097/01.HP.0000356672.44380.b7.
  • 2 The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007; 37 (2-4): 1-332 DOI: 10.1016/j.icrp.2007.10.003.
  • 3 United Nations Scientific Committee on the Effects of Atomic Radiation. “Sources and effects of ionizing radiation. UNSCEAR 1996 report to the General Assembly, with scientific annex.”(. 1996
  • 4 National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Vol. 7. National Academies Press; 2006
  • 5 Grant FD, Gelfand MJ, Drubach LA, Treves ST, Fahey FH. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine. Pediatr Radiol 2015; 45 (05) 706-713 DOI: 10.1007/s00247-014-3211-x.
  • 6 Linet MS, Kim KP, Rajaraman P. Children's exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations. Pediatr Radiol 2009; 39 (Suppl. 01) S4-S26 DOI: 10.1007/s00247-008-1026-3.
  • 7 Marte A, Sabatino MD, Borrelli M. et al. Pneumovesicoscopic treatment of congenital bladder diverticula in children: our experience. J Laparoendosc Adv Surg Tech A 2010; 20 (01) 87-90 DOI: 10.1089/lap.2009.0001.
  • 8 Peters CA, Skoog SJ, Arant BS. & American Urological Association. 2018 ). Management and screening of primary vesicoureteral reflux in children.
  • 9 Tekgül S, Riedmiller H, Hoebeke P. et al; European Association of Urology. EAU guidelines on vesicoureteral reflux in children. Eur Urol 2012; 62 (03) 534-542
  • 10 Rodd C, Metzger DL, Sharma A. Canadian Pediatric Endocrine Group (CPEG) Working Committee for National Growth Charts. Extending World Health Organization weight-for-age reference curves to older children. BMC Pediatr 2014; 14 (01) 32
  • 11 Alessio AM, Farrell MB, Fahey FH. Role of reference levels in nuclear medicine: a report of the SNMMI Dose Optimization Task Force. J Nucl Med 2015; 56 (12) 1960-1964
  • 12 Lebowitz RL, Olbing H, Parkkulainen KV, Smellie JM, Tamminen-Möbius TE. International Reflux Study in Children. International system of radiographic grading of vesicoureteric reflux. Pediatr Radiol 1985; 15 (02) 105-109 DOI: 10.1007/BF02388714.
  • 13 Halvorsen PH, Cirino E, Das IJ. et al. AAPM-RSS medical physics practice guideline 9. a. for SRS-SBRT. J Appl Clin Med Phys 2017; 18 (05) 10-21
  • 14 Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med 2007; 357 (22) 2277-2284 DOI: 10.1056/NEJMra072149.
  • 15 Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001; 176 (02) 289-296 DOI: 10.2214/ajr.176.2.1760289.
  • 16 Hong J-Y, Han K, Jung J-H, Kim JS. Association of Exposure to Diagnostic Low-Dose Ionizing Radiation With Risk of Cancer Among Youths in South Korea. JAMA Netw Open 2019; 2 (09) e1910584 DOI: 10.1001/jamanetworkopen.2019.10584.
  • 17 Harrison JD, Balonov M, Martin CJ. et al. Use of effective dose. Ann ICRP 2016; 45 (1, Suppl): 215-224 DOI: 10.1177/0146645316634566.
  • 18 Hore-Lacy Ian. Nuclear Energy in the 21st Century: World Nuclear University Press. Elsevier; 2010
  • 19 Pearce MS, Salotti JA, Little MP. et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380 (9840): 499-505 DOI: 10.1016/S0140-6736(12)60815-0.
  • 20 Darge K, Ghods S, Zieger B, Rohrschneider W, Troeger J. Reduction in voiding cystourethrographies after the introduction of contrast enhanced sonographic reflux diagnosis. Pediatr Radiol 2001; 31 (11) 790-795 DOI: 10.1007/s002470100556.
  • 21 Treves ST, Davis RT, Fahey FH. Administered radiopharmaceutical doses in children: a survey of 13 pediatric hospitals in North America. J Nucl Med 2008; 49 (06) 1024-1027 DOI: 10.2967/jnumed.107.049908.
  • 22 Gelfand MJ, Parisi MT, Treves ST. Pediatric Nuclear Medicine Dose Reduction Workgroup. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med 2011; 52 (02) 318-322 DOI: 10.2967/jnumed.110.084327.
  • 23 Treves ST, Parisi MT, Gelfand MJ. Pediatric radiopharmaceutical doses: new guidelines. Radiology 2011; 261 (02) 347-349 DOI: 10.1148/radiol.11110449.
  • 24 Ward VL, Barnewolt CE, Strauss KJ. et al. Radiation exposure reduction during voiding cystourethrography in a pediatric porcine model of vesicoureteral reflux. Radiology 2006; 238 (01) 96-106