Pneumologie 2016; 70(05): 301-313
DOI: 10.1055/s-0042-100607
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Therapie der Mukoviszidose mit CFTR-Modulatoren

Treatment of Cystic Fibrosis with CFTR Modulators
B. Tümmler
Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover und Standort BREATH des Deutschen Zentrums für Lungenforschung (DZL), Hannover
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 31. Dezember 2015

akzeptiert 12. Januar 2016

Publikationsdatum:
19. Februar 2016 (online)

Zusammenfassung

Die Mukoviszidose ist das erste Beispiel für die erfolgreiche Entwicklung einer Mutationstyp-spezifischen Therapie. Diese autosomal rezessiv vererbte Störung des epithelialen Transports von Chlorid und Bikarbonat wird durch Mutationen im CFTR-Gen ausgelöst. Zur Behandlung der ursächlichen Störungen werden zwei Klassen von CFTR-Modulatoren unterschieden. Potentiatoren erhöhen die Aktivität des mutanten Ionenkanals. Korrektoren überlesen irreguläre Stopp-Codons oder erleichtern die ko- und posttranslationale Prozessierung der CFTR-Mutante. In Deutschland sind zurzeit der Potentiator Ivacaftor zur Behandlung von Kanalöffnungsstörungen und der Korrektor Lumacaftor in Kombination mit Ivacaftor zur Therapie der häufigsten Mutante Phe508del CFTR zugelassen. Dieser Artikel gibt praktische Hinweise für die Anwendung der zugelassenen Modulatoren und informiert über die Populationsgenetik der CFTR-Mutationen in Deutschland, CFTR-Biomarker zur Erfolgskontrolle der Modulatortherapie und über die bisherige und aktuelle präklinische und klinische Forschung zur Entwicklung von CFTR-Modulatoren.

Abstract

Personalized medicine promises that medical decisions, practices and products are tailored to the individual patient. Cystic fibrosis, an inherited disorder of chloride and bicarbonate transport in exocrine glands, is the first successful example of customized drug development for mutation-specific therapy. There are two classes of CFTR modulators: potentiators that increase the activity of CFTR at the cell surface, and correctors that either promote the read-through of nonsense mutations or facilitate the translation, folding, maturation and trafficking of mutant CFTR to the cell surface. The potentiator ivacaftor and the corrector lumacaftor are approved in Germany for the treatment of people with cystic fibrosis who carry a gating mutation such as p.Gly551Asp or who are homozygous for the most common mutation p.Phe508del, respectively. This report provides an overview of the basic defect in cystic fibrosis, the population genetics of CFTR mutations in Germany and the bioassays to assess CFTR function in humans together with the major achievements of preclinical research and clinical trials to bring CFTR modulators to the clinic. Some practical information on the use of ivacaftor and lumacaftor in daily practice and an update on pitfalls, challenges and novel strategies of bench-to-bedside development of CFTR modulators are also provided.

 
  • Literatur

  • 1 Ratjen F, Bell SC, Rowe SM et al. Cystic fibrosis. Nature Dis Primers 2015; 15010
  • 2 Mall MA, Elborn JS Hrsg. Cystic Fibrosis. ERS monograph 64. Wakefield, UK: Charlesworth Press; 2014
  • 3 Sens B, Stern M Hrsg. Qualitätssicherung Mukoviszidose 2011. Bad Honnef: Hippocampus; 2012
  • 4 Tümmler B Hrsg. Mutation-specific therapies in cystic fibrosis – Current status and prospects. Bremen: Uni-Med; 2014
  • 5 Riordan JR. CFTR function and prospects for therapy. Annu Rev Biochem 2008; 77: 701-726
  • 6 Gibson LE, Cooke RE. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 1959; 23: 545-549
  • 7 Sato K, Sato F. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J Clin Invest 1984; 73: 1763-1771
  • 8 Quinton P, Molyneux L, Ip W et al. β-adrenergic sweat secretion as a diagnostic test for cystic fibrosis. Am J Respir Crit Care Med 2012; 186: 732-739
  • 9 Knowles M, Gatzy J, Boucher R. Relative ion permeability of normal and cystic fibrosis nasal epithelium. J Clin Invest 1983; 71: 1410-1417
  • 10 Rowe SM, Clancy JP, Wilschanski M. Nasal potential difference measurements to assess CFTR ion channel activity. Methods Mol Biol 2011; 741: 69-86
  • 11 Wilschanski M, Famini H, Strauss-Liviatan N et al. Nasal potential difference measurements in patients with atypical cystic fibrosis. Eur Respir J 2001; 17: 1208-1215
  • 12 Sermet-Gaudelus I, Girodon E, Sands D et al. Clinical phenotype and genotype of children with borderline sweat test and abnormal nasal epithelial chloride transport. Am J Respir Crit Care Med 2010; 182: 929-936
  • 13 De Jonge HR, Ballmann M, Veeze H et al. Ex vivo CF diagnosis by intestinal current measurements (ICM) in small aperture, circulating Ussing chambers. J Cyst Fibros 2004; 03 (Suppl. 02) 159-163
  • 14 Mall M, Hirtz S, Gonska T et al. Assessment of CFTR function in rectal biopsies for the diagnosis of cystic fibrosis. J Cyst Fibros 2004; 03 (Suppl. 02) 165-169
  • 15 Derichs N, Sanz J, Von Kanel T et al. Intestinal current measurement for diagnostic classification of patients with questionable cystic fibrosis: validation and reference data. Thorax 2010; 65: 594-599
  • 16 Dekkers JF, Wiegerinck CL, de Jonge HR et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 2013; 19: 939-945
  • 17 Eckford PD, Ramjeesingh M, Molinski S et al. VX-809 and related corrector compounds exhibit secondary activity stabilizing active F508del-CFTR after its partial rescue to the cell surface. Chem Biol 2014; 21: 666-678
  • 18 Linde L, Kerem B. Nonsense-mediated mRNA decay and cystic fibrosis. Methods Mol Biol 2011; 741: 137-154
  • 19 Fan-Minogue H, Bedwell DM. Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity. RNA 2008; 14: 148-157
  • 20 Lee HL, Dougherty JP. Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol Ther 2012; 136: 227-266
  • 21 Kerem E, Hirawat S, Armoni S et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 2008; 372: 719-727
  • 22 Sermet-Gaudelus I, Boeck KD, Casimir GJ et al. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med 2010; 182: 1262-1272
  • 23 Kerem E, Konstan MW, De Boeck K et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med 2014; 2: 539-547
  • 24 Moran O, Zegarra-Moran O. A quantitative description of the activation and inhibition of CFTR by potentiators: Genistein. FEBS Lett 2005; 579: 3979-3983
  • 25 Van Goor F, Hadida S, Grootenhuis PD et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A 2009; 106: 18825-18830
  • 26 Eckford PD, Li C, Ramjeesingh M et al. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J Biol Chem 2012; 287: 36639-36649
  • 27 Yu H, Burton B, Huang CJ et al. Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros 2012; 11: 237-245
  • 28 Van Goor F, Yu H, Burton B et al. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J Cyst Fibros 2014; 13: 29-36
  • 29 Accurso FJ, Rowe SM, Clancy JP et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 2010; 363: 1991-2003
  • 30 Ramsey BW, Davies J, McElvaney NG et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011; 365: 1663-1672
  • 31 Davies JC, Wainwright CE, Canny GJ et al. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med 2013; 187: 1219-1225
  • 32 Davies J, Sheridan H, Bell N et al. Assessment of clinical response to ivacaftor with lung clearance index in cystic fibrosis patients with a G551D-CFTR mutation and preserved spirometry: a randomised controlled trial. Lancet Respir Med 2013; 1: 630-638
  • 33 Harrison MJ, Murphy DM, Plant BJ. Ivacaftor in a G551D homozygote with cystic fibrosis. N Engl J Med 2013; 369: 1280-1282
  • 34 Hebestreit H, Sauer-Heilborn A, Fischer R et al. Effects of ivacaftor on severely ill patients with cystic fibrosis carrying a G551D mutation. J Cyst Fibros 2013; 12: 599-603
  • 35 Graeber SY, Hug MJ, Sommerburg O et al. Intestinal Current Measurements Detect Activation of Mutant CFTR in Patients with Cystic Fibrosis with the G551D Mutation Treated with Ivacaftor. Am J Respir Crit Care Med 2015; 192: 1252-1255
  • 36 Rowe SM, Heltshe SL, Gonska T et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med 2014; 190: 175-184
  • 37 De Boeck K, Munck A, Walker S et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J Cyst Fibros 2014; 13: 674-680
  • 38 Moss RB, Flume PA, Elborn JS et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis who have an Arg117His-CFTR mutation: a double-blind, randomised controlled trial. Lancet Respir Med 2015; 3: 524-533
  • 39 Kälin N, Claass A, Sommer M et al. DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis. J Clin Invest 1999; 103: 1379-1389
  • 40 van Barneveld A, Stanke F, Tamm S et al. Functional analysis of F508del CFTR in native human colon. Biochim Biophys Acta 2010; 1802: 1062-1069
  • 41 Okiyoneda T, Veit G, Dekkers JF et al. Mechanism-based corrector combination restores ΔF508-CFTR folding and function. Nat Chem Biol 2013; 9: 444-454
  • 42 Van Goor F, Hadida S, Grootenhuis PD et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 2011; 108: 18843-18848
  • 43 Clancy JP, Rowe SM, Accurso FJ et al. Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax 2012; 67: 12-18
  • 44 Boyle MP, Bell SC, Konstan MW et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med 2014; 2: 527-538
  • 45 Wainwright CE, Elborn JS, Ramsey BW et al. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N Engl J Med 2015; 373: 220-231
  • 46 He L, Kota P, Aleksandrov AA et al. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein. FASEB J 2013; 27: 536-545
  • 47 Davis PB. Another Beginning for Cystic Fibrosis Therapy. N Engl J Med 2015; 373: 274-276
  • 48 Jones AM, Barry PJ. Lumacaftor/ivacaftor for patients homozygous for Phe508del-CFTR: should we curb our enthusiasm?. Thorax 2015; 70: 615-616
  • 49 Tümmler B. The stony road to phe508del CFTR pharmacotherapy: smoothing the first rock. Lancet Respir Med 2014; 2: 508-509
  • 50 Wainwright CE. Ivacaftor for patients with cystic fibrosis. Expert Rev Respir Med 2014; 8: 533-538
  • 51 Pankow S, Bamberger C, Calzolari D et al. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 2015; 528: 510-516
  • 52 Phuan PW, Veit G, Tan J et al. Synergy-based small-molecule screen using a human lung epithelial cell line yields ΔF508-CFTR correctors that augment VX-809 maximal efficacy. Mol Pharmacol 2014; 86: 42-51
  • 53 Veit G, Oliver K, Apaja PM et al. Ribosomal stalk silencing corrects the ΔF508-CFTR functional expression defect. PLoS Biology 2016; [im Druck]
  • 54 Roth DM, Hutt DM, Tong J et al. Modulation of the maladaptive stress response to manage diseases of protein folding. PLoS Biol 2014; 12: e1001998
  • 55 De Stefano D, Villella VR, Esposito S et al. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy 2014; 10: 2053-2074
  • 56 Cholon DM, Quinney NL, Fulcher ML et al. Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis. Sci Transl Med 2014; 6: 246ra96
  • 57 Veit G, Avramescu RG, Perdomo D et al. Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression. Sci Transl Med 2014; 6: 246ra97
  • 58 Phuan PW, Veit G, Tan JA et al. Potentiators of Defective ΔF508-CFTR Gating that Do Not Interfere with Corrector Action. Mol Pharmacol 2015; 88: 791-799
  • 59 Brinks V, Lipinska K, Koppelaar M et al. QR-010 treatment for cystic fibrosis: Assessing the airway – mucus barrier in delivery. Ped Pulmonol 2015; 50 (Suppl. 41) 271
  • 60 Leuchte HH, Behr J, Ewert R et al. Riociguat: stimulator of soluble guanylate-cyclase. New mode of action for the treatment of pulmonary arterial and non operable chronic thromboembolic pulmonary hypertension. Pneumologie 2015; 69: 135-143
  • 61 Taylor-Cousar JL, Zemanick E, Salomon G. The pharmacokinetics of N9115, an inhibitor of S-nitrosoglutathione reductase, in cystic fibrosis patients. Ped Pulmonol 2015; 50 (Suppl. 41) 285-286
  • 62 Dörk T, Dworniczak B, Aulehla-Scholz C et al. Distinct spectrum of CFTR gene mutations in congenital absence of vas deferens. Hum Genet 1997; 100: 365-377
  • 63 Quittner AL, Buu A, Messer MA et al. Development and validation of The Cystic Fibrosis Questionnaire in the United States: a health-related quality-of-life measure for cystic fibrosis. Chest 2005; 128: 2347-2354
  • 64 Rowe SM, Liu B, Hill A et al. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation. PLoS One 2013; 8: e66955