ZWR - Das Deutsche Zahnärzteblatt 2017; 126(01/02): 8-13
DOI: 10.1055/s-0042-102777
Wissenschaft – Kieferorthopädie
Georg Thieme Verlag KG Stuttgart · New York

Ist die Temperaturentwicklung beim Debonding bei allen rotierenden zahnärztlichen Instrumenten gleich?

Is the Temperature Development During Debonding Identical for all Rotating Dental Instruments?
R. Biedermann
1   Innsbruck
,
K. Winter
1   Innsbruck
,
A. G. Crismani
1   Innsbruck
› Author Affiliations
Further Information

Publication History

Publication Date:
22 March 2017 (online)

Als kritischer Punkt des Debondings kann die Temperaturentwicklung der Pulpa gesehen werden. Die intrapulpäre Temperatur darf einen gewissen Schwellenwert nicht überschreiten, um keine bleibenden Schäden in Form einer iatrogenen Pulpitis herbeizuführen. In dieser In-vitro-Studie wurden im Hinblick auf Temperaturveränderungen im Pulpenkavum verschiedene Finiermethoden im Rahmen von Adhäsiventfernung untersucht.

 
  • Literatur

  • 1 Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 1965; 19: 515-530
  • 2 Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999; 15: 275-281
  • 3 Chiodera G, Gastaldi G, Millar BJ. Temperature change in pulp cavity in vitro during the polymerization of provisional resins. Dent Mater 2009; 25: 321-325
  • 4 Daronch M, Rueggeberg FA, Hall G. et al. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 2007; 23: 1283-1288
  • 5 Kodonas K, Gogos C, Tziafa C. Effect of simulated pulpal microcirculation on intrachamber temperature changes following application of various curing units on tooth surface. J Dent 2009; 37: 485-490
  • 6 Martins GR, Cavalcanti BN, Rode SM. Increases in intrapulpal temperature during polymerization of composite resin. J Prosthet Dent 2006; 96: 328-331
  • 7 Sulieman M, Addy M, Rees JS. Surface and intra-pulpal temperature rises during tooth bleaching: an in vitro study. Br Dent J 2005; 199: 37-40
  • 8 Chan KH. Rapid and selective removal of composite from tooth surfaces with a 9.3μm Co2 laser using spectral feedback. Lasers Surg Med 2011; 43: 824-832
  • 9 Ma T, Marangoni RD, Flint W. In vitro comparison of debonding force and intrapulpal temperature changes during ceramic orthodontic bracket removal using a carbon dioxide laser. Am J Orthod Dentofacial Orthop 1997; 111: 203-210
  • 10 Obata A, Tsumura T, Niwa K. et al. Super pulse CO2 laser for bracket bonding and debonding. Eur J Orthod 1999; 21: 193-198
  • 11 Rickabaugh JL, Marangoni RD, McCaffrey KK. Ceramic bracket debonding with the carbon dioxide laser. Am J Orthod Dentofacial Orthop 1996; 110: 388-393
  • 12 Strobl K, Bahns TL, Willham L. et al. Laser-aided debonding of orthodontic ceramic brackets. Am J Orthod Dentofacial Orthop 1992; 101: 152-158
  • 13 Bhaskar SN, Lilly GE. Intrapulpal Temperature during cavity preparation. J Dent Res 1965; 44: 644-647
  • 14 Ercoli C, Rotella M, Funkenbusch PD. et al. In vitro comparison of the cutting efficiency and temperature production of ten different rotary cutting instruments. Part I: Turbine. J Prosthet Dent 2009; 101: 248-261
  • 15 Ercoli C, Rotella M, Funkenbusch PD. et al. In vitro comparison of the cutting efficiency and temperature production of ten different rotary cutting instruments. Part II: electric handpiece and comparison with turbine. J Prosthet Dent 2009; 101: 319-331
  • 16 Oztürk B, Usümez A, Oztürk AN. et al. In vitro assessment of temperature change in the pulp chamber during cavity preparation. J Prosthet Dent 2004; 91: 436-440
  • 17 Schuchard A. A histologic assessment of low-torque, ultrahigh-speed cutting technique. J Prosthet Dent 1975; 34: 644-651
  • 18 Watson TF, Flanagan D, Stone DG. High and low torque handpieces: cutting dynamics, enamel cracking and tooth temperature. Br Dent J 2000; 188: 680-686
  • 19 Zachrisson BU. JCO/interviews Dr. Bjorn U. Zachrisson on excellence in finishing. Part 1. J Clin Orthod 1986; 20: 460-482
  • 20 Gängler P. Das Verhalten der Blutzirkulation der Pulpa auf thermische Reize. Zahn Mund Kieferheilkd. Zentralbl 1976; 64: 480-486
  • 21 Lisanti VF, Zander HA. Thermal injury to normal dog teeth: in vivo measurements of pulp temperature increases and their effect on the pulp tissue. J Dent Res 1952; 31: 548-558
  • 22 Pohto M, Scheinin A. Microscopic observations on living dental pulp ii. the effect of thermal irritants on the circulation of the pulp in the lower rat incisor. Acta Odontol Scand 1958; 16: 315-327
  • 23 Raab WH. Temperature related changes in pulpal microcirculation. Proc Finn Dent Soc 1992; 88: 469-479
  • 24 Nyborg H, Brannström M. Pulp Reaction to heat. J Prosthet Dent 1968; 19: 605-612
  • 25 Vukovich ME, Wood DP, Daley TD. Heat generated by grinding during removal of ceramic brackets. Am J Orthod Dentofacial Orthop 1991; 99: 505-512
  • 26 Jonke E, Weiland F, Freudenthaler JW. et al. Heat generated by residual adhesive removal after debonding of brackets. World. J Orthod 2006; 7: 357-360
  • 27 Baysal A, Uysal T, Usumez S. Temperature rise in the pulp chamber during different stripping procedures. Angle Orthod 2007; 77: 478-482
  • 28 Malkoç S, Uysal T, Usümez S. et al. In-vitro assessment of termperature rise in the pulp during orthodontic bonding. Am J Orthod Dentofacial Orthop 2010; 137: 379-383
  • 29 Mizrahi E, Cleaton-Jones P, Landy C. Tooth surface and pulp chamber temperatures developed during electrothermal bonding. Am J Orthod Dentofacial Orthop 1996; 109: 506-514
  • 30 Crooks M, Hood J, Harkness M. Thermal debonding of ceramic brackets: an in vitro study. Am J Orthod Dentofacial Orthop 1997; 111: 163-172
  • 31 Jost-Brinkmann PG, Radlanski RJ, Artun J. et al. Risk of pulp damage due to temperature increase during thermodebonding of ceramic brackets. Eur J Orthod 1997; 19: 623-628
  • 32 Jost-Brinkmann PG, Stein H, Miethke RR. et al. Histologic investigation of the human pulp after thermodebonding of metal and ceramic brackets. Am J Orthod Dentofacial Orthop 1992; 102: 410-417
  • 33 Lee-Knight CT, Wylie SG, Major PW. et al. Mechanical and electrothermal debonding: effect on ceramic veneers an dental pulp. Am J Orthod Dentofacial Orthop 1997; 112: 263-270
  • 34 Sheridan JJ, Brawley G, Hastings J. Electrothermal debracketing. Part I. An in vitro study. Am J Orthod 1986; 89: 21-27
  • 35 Takla PM, Shivapuja PK. Pulpal response in electrothermal debonding. Am J Orthod Dentofacial Orthop 1995; 108: 623-629
  • 36 Bicakci AA, Kocoglu-Altan B, Celik-Ozenci C. et al. Histopathologic evaluation of pulpal tissue response to various adhesive cleanup techniques. Am J Orthod Dentofacial Orthop 2010; 138: 12.e1-12.e7
  • 37 Mank S, Steineck M, Brauchli L. Influence of various polishing methods on pulp temperature: An in vitro study. J Orofac Orthop 2011; 72: 348-357
  • 38 Uysal T, Eldeniz AU, Usumez S. et al. Thermal changes in the pulp chamber during different adhesive clean-up procedures. Angle Orthod 2005; 75: 220-225