Rofo 2016; 188(09): 853-858
DOI: 10.1055/s-0042-110098
Heart
© Georg Thieme Verlag KG Stuttgart · New York

Epicardial Fat Volume and Aortic Stiffness in Healthy Individuals: A Quantitative Cardiac Magnetic Resonance Study

Epikardiales Fettvolumen und aortale Steifigkeit bei gesunden Menschen: eine quantitative Analyse mittels MRT des Herzens
R. Homsi
1   Radiology, University Hospital Bonn, Germany
,
D. Thomas
1   Radiology, University Hospital Bonn, Germany
,
J. Gieseke
2   Philips Healthcare, Hamburg, Germany
,
M. Meier-Schroers
1   Radiology, University Hospital Bonn, Germany
,
D. Dabir
1   Radiology, University Hospital Bonn, Germany
,
D. Kuetting
1   Radiology, University Hospital Bonn, Germany
,
J. A. Luetkens
1   Radiology, University Hospital Bonn, Germany
,
C. Marx
1   Radiology, University Hospital Bonn, Germany
,
H. H. Schild
1   Radiology, University Hospital Bonn, Germany
,
A. Sprinkart
1   Radiology, University Hospital Bonn, Germany
3   Institute of Medical Engineering, Ruhr-University Bochum, Germany
› Author Affiliations
Further Information

Publication History

02 December 2015

12 May 2016

Publication Date:
31 August 2016 (online)

Abstract

Purpose: To determine epicardial fat volume (EFV) and aortic stiffness (assessed by aortic pulse wave velocity (PWV)) in healthy individuals, and to investigate the relationship of these parameters, and their association with body mass index (BMI) and age.

Materials and Methods: 58 subjects (29 men, mean age 44.7 ± 13.9 years[y]) underwent a CMR exam at 1.5 Tesla. A 2 D velocity-encoded CMR scan was acquired to determine PWV. The EFV was measured based on a 3 D-mDixon sequence. Group comparisons were made between younger (age < 45y; n = 30; mean age 33.4 ± 6.6y) and older (> 45y; n = 28; 56.7 ± 8.4y) subjects and between subjects with a BMI < 25 kg/m2 (n = 28; BMI 21.9 ± 2.5 kg/m2) and a BMI > 25 kg/m2 (n = 30; 28.7 ± 4.0 kg/m2). Associations between the determined parameters were assessed by analyses of covariance (ANCOVAs).

Results: The mean values of PWV and EFV (normalized to body surface area) were 6.9 ± 1.9 m/s and 44.2 ± 25.0 ml/m2, respectively. The PWV and EFV were significantly higher in the older group (PWV = 7.9 ± 2.0 m/s vs. 6.0 ± 1.2 m/s; EFV = 54.7 ml/m² vs. 34.5 ml/m²; p < 0.01, each), with no significant differences in BMI or sex. In the overweighted group the EFV was significantly higher than in subjects with a BMI < 25 kg/m² (EFV = 56.1 ± 27.1 ml/m2 vs. 31.5 ± 14.6 ml/m2; p < 0.01) but without a significant difference in PWV. ANCOVA revealed a significant correlation between EFV and PWV, also after adjustment for age (p = 0.025).

Conclusion: An association was found between age and EFV as well as PWV. EFV and PWV were related to each other also after adjustment for age. The metabolic and pro-inflammatory activity found with increased epicardial fat volume may promote the development of atherosclerosis and aortic stiffness. CMR may be valuable for future studies investigating the relationship between EFV and PWV in patients with increased cardiovascular risk.

Key Points:

• EFV and PWV can be assessed in a single CMR exam.

• EFV and aortic stiffness are both associated with cardiovascular risk.

• EFV correlates with aortic stiffness, possibly due to similar pro-inflammatory mechanisms.

Citation Format:

• Homsi R, Thomas D, Gieseke J et al. Epicardial Fat Volume and Aortic Stiffness in Healthy Individuals: A Quantitative Cardiac Magnetic Resonance Study. Fortschr Röntgenstr 2016; 188: 853 – 858

Zusammenfassung

Ziel: Das Ziel war die Messung des epikardialen Fettvolumens sowie der aortalen Steifigkeit (bestimmt anhand der aortalen Pulswellengeschwindigkeit (PWV)) bei Gesunden, sowie die Untersuchung möglicher Zusammenhänge zwischen diesen Maßen, Body Mass Index (BMI) und Alter.

Material und Methoden: 58 gesunde Studienteilnehmer (29 Männer; mittleres Alter 44,7 ± 13,9 Jahre [J]) wurden mittels Kardio-MRT bei 1,5 Tesla untersucht. Die Berechnung der PWV erfolgte mittels 2D-Flussmessung. Das epikardiale Fettvolumen (EFV) wurde anhand einer 3D-mDixon-Sequenz ermittelt. Es erfolgte eine Gruppeneinteilung nach Alter in < 45 J (n = 30; 33,4 ± 6,6 J) und > 45 J (n = 28; 56,7 ± 8,4 J) sowie nach BMI in < 25 kg/m2 (n = 28; BMI 21,9 ± 2,5 kg/m2) und > 25 kg/m2 (n = 30; 28,7 ± 4,0 kg/m2). Die Gruppen wurden untereinander verglichen und Zusammenhänge wurden mittels Kovarianzanalysen untersucht.

Ergebnisse: Die Mittelwerte von PWV und EFV (bezogen auf die Körperoberfläche) waren 6,9 ± 1,9 m/s und 44,2 ± 25,0 ml/m². Die Gruppe der älteren Personen hatte signifikant höhere PWV- und EFV-Werte als die jüngere Gruppe (PWV = 7,9 ± 2,0 m/s vs. 6,0 ± 1,2 m/s; EFV = 54,7 ml/m² vs. 34,5 ml/m²; jeweils p < 0,01), ohne einen signifikanten Unterschied bezüglich BMI und Geschlecht. Übergewichtige Personen (BMI > 25 kg/m²) hatten signifikant höhere EFV-Werte als die Gruppe mit einem BMI < 25 kg/m² (EFV = 56,1 ± 27,1 ml/m2 vs. 31,5 ± 14,6 ml/m2; p < 0,01), ohne signifikante Unterschiede in der PWV. Die Kovarianzanalyse zeigte eine signifikante Korrelation zwischen EFV und PWV, auch nach Adjustierung für das Alter (p = 0,025).

Schlussfolgerung: Das EFV und die PWV zeigen nicht nur einen Zusammenhang mit dem Alter, sondern auch untereinander, unabhängig vom Alter. Eine metabolische und pro-inflammatorische Aktivität bei erhöhtem epikardialem Fettvolumen könnte die Entwicklung einer Atherosklerose und einer erhöhten aortalen Steifigkeit verstärken. Die Kardio-MRT eignet sich zur Untersuchung der Zusammenhänge von EFV und PWV in weiterführenden Studien bei Patienten mit kardiovaskulären Risikofaktoren.

Kernaussagen:

• EFV und PWV können mittels Kardio-MRT in nur einer Untersuchung bestimmt werden.

• EFV und aortale Steifigkeit sind mit erhöhtem kardiovaskulärem Risiko verbunden.

• EFV und aortale Steifigkeit korrelieren miteinander, möglicherweise aufgrund gemeinsamer pro-inflammatorischer Mechanismen.

 
  • References

  • 1 Laurent S, Cockcroft J, Van Bortel L et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; 27: 2588-2605
  • 2 O'Rourke M. Mechanical principles in arterial disease. Hypertension 1995; 26: 2-9
  • 3 Dey D, Nakazato R, Li D et al. Epicardial and thoracic fat – Noninvasive measurement and clinical implications. Cardiovasc Diagn Ther 2012; 2: 85-93
  • 4 Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 2011; 22: 450-457
  • 5 Mazurek T, Zhang L, Zalewski A et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003; 108: 2460-2466
  • 6 Iacobellis G, Pistilli D, Gucciardo M et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine 2005; 29: 251-255
  • 7 Wentland AL, Grist TM, Wieben O. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc Diagn Ther 2014; 4: 193-206
  • 8 Homsi R, Meier-Schroers M, Gieseke J et al. 3D-Dixon MRI based volumetry of peri- and epicardial fat. Int J Cardiovasc Imaging 2015; 85: 936-942
  • 9 Maceira AM, Prasad SK, Khan M et al. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2006; 8: 417-426
  • 10 Rokey R, Kuo LC, Zoghbi WA et al. Determination of parameters of left ventricular diastolic filling with pulsed Doppler echocardiography: comparison with cineangiography. Circulation 1985; 71: 543-550
  • 11 Dorniak K, Hellmann M, Rawicz-Zegrzda D et al. A novel tool for phase contrast MR-derived pulse wave velocity measurement – validation against applanation tonometry and phantom studies. Journal of Cardiovascular Magnetic Resonance 2015; 17: P40
  • 12 Liu CS, Li CI, Shih CM et al. Arterial stiffness measured as pulse wave velocity is highly correlated with coronary atherosclerosis in asymptomatic patients. J Atheroscler Thromb 2011; 18: 652-658
  • 13 Baulmann J, Homsi R, Uen S et al. Pulse wave velocity is increased in patients with transient myocardial ischemia. J Hypertens 2006; 24: 2085-2090
  • 14 McEniery CM, Yasmin Hall IR et al. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). Journal of the American College of Cardiology 2005; 46: 1753-1760
  • 15 Zebekakis PE, Nawrot T, Thijs L et al. Obesity is associated with increased arterial stiffness from adolescence until old age. J Hypertens 2005; 23: 1839-1846
  • 16 Wildman RP, Mackey RH, Bostom A et al. Measures of obesity are associated with vascular stiffness in young and older adults. Hypertension 2003; 42: 468-473
  • 17 Ferreira I, Snijder MB, Twisk JW et al. Central fat mass versus peripheral fat and lean mass: opposite (adverse versus favorable) associations with arterial stiffness? The Amsterdam Growth and Health Longitudinal Study. J Clin Endocrinol Metab 2004; 89: 2632-2639
  • 18 Dyer AR, Elliott P. The INTERSALT study: relations of body mass index to blood pressure. INTERSALT Co-operative Research Group. J Hum Hypertens 1989; 3: 299-308
  • 19 Cutler JA, Sorlie PD, Wolz M et al. Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988–1994 and 1999–2004. Hypertension 2008; 52: 818-827
  • 20 Perissinotto E, Pisent C, Sergi G et al. Anthropometric measurements in the elderly: age and gender differences. Br J Nutr 2002; 87: 177-186
  • 21 Silaghi A, Piercecchi-Marti MD, Grino M et al. Epicardial adipose tissue extent: relationship with age, body fat distribution, and coronaropathy. Obesity (Silver Spring) 2008; 16: 2424-2430
  • 22 Rosito GA, Massaro JM, Hoffmann U et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 2008; 117: 605-613
  • 23 Kim BJ, Kim BS, Kang JH. Echocardiographic epicardial fat thickness is associated with arterial stiffness. International journal of cardiology 2013; 167: 2234-2238
  • 24 Park HE, Choi SY, Kim HS et al. Epicardial fat reflects arterial stiffness: assessment using 256-slice multidetector coronary computed tomography and cardio-ankle vascular index. J Atheroscler Thromb 2012; 19: 570-576
  • 25 Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. Journal of the American Heart Association 2014; 3: e000582
  • 26 Choi KM, Lee KW, Seo JA et al. Relationship between brachial-ankle pulse wave velocity and cardiovascular risk factors of the metabolic syndrome. Diabetes Res Clin Pract 2004; 66: 57-61
  • 27 Nakanishi N, Suzuki K, Tatara K. Clustered features of the metabolic syndrome and the risk for increased aortic pulse wave velocity in middle-aged Japanese men. Angiology 2003; 54: 551-559
  • 28 Begum N, Song Y, Rienzie J et al. Vascular smooth muscle cell growth and insulin regulation of mitogen-activated protein kinase in hypertension. Am J Physiol 1998; 275: C42-C49
  • 29 Ulrich P, Cerami A. Protein glycation, diabetes, and aging. Recent Prog Horm Res 2001; 56: 1-21
  • 30 Talman AH, Psaltis PJ, Cameron JD et al. Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther 2014; 4: 416-429