Subscribe to RSS
DOI: 10.1055/s-0042-112817
Mechanisms of Aberrant PKA Activation by Cα Subunit Mutations
Abstract
Somatic mutations in PRKACA, coding for the catalytic α subunit of protein kinase A (PKA), have been recently identified as the most frequent genetic alteration in cortisol-secreting adrenocortical adenomas, which are responsible for adrenal Cushing’s syndrome. The mutations identified so far lie at the interface between the catalytic (C) and regulatory (R) subunit of PKA. Detailed functional studies of the most frequent of these mutations (L206R) as well as of another one in the same region of the C subunit (199_200insW) have revealed that these mutations cause constitutive activation of PKA and lack of regulation by cAMP. This is due to interference with the binding of the R subunit, which keeps the C subunit inactive in the absence of cyclic AMP. Here, we review these recent findings, with a particular focus on the mechanisms of action of PRKACA mutations.
Publication History
Received: 04 May 2016
Accepted: 14 July 2016
Article published online:
03 November 2016
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
References
- 1 Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 2002; 3: 639-650
- 2 Taylor SS, Ilouz R, Zhang P, Kornev AP. Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol 2012; 13: 646-658
- 3 Bossis I, Stratakis CA. Minireview: PRKAR1A: Normal and Abnormal Functions. Endocrinology 2004; 145: 5452-5458
- 4 Lania AG, Mantovani G, Spada A. Mechanisms of Disease: mutations of G proteins and G-protein-coupled receptors in endocrine diseases. Nat Clin Pract End Met 2006; 2: 681-693
- 5 Lyons J, Landis C, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh Q, Clark O, Kawasaki E, Bourne H, McCormick F. Two G protein oncogenes in human endocrine tumors. Science 1990; 249: 655-659
- 6 Parma J, Duprez L, Van Sande J, Cochaux P, Gervy C, Mockel J, Dumont J, Vassart G. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 1993; 365: 649-651
- 7 Vallar L, Spada A, Giannattasio G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 1987; 330: 566-568
- 8 Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989; 340: 692-696
- 9 Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 1991; 325: 1688-1695
- 10 Carney JA, Young WF, Stratakis CA. Primary bimorphic adrenocortical disease: cause of hypercortisolism in McCune-Albright syndrome. Am J Surg Pathol 2011; 35: 1311-1326
- 11 Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS, Cho-Chung YS, Stratakis CA. Mutations of the gene encoding the protein kinase A type I-[alpha] regulatory subunit in patients with the Carney complex. Nat Genet 2000; 26: 89-92
- 12 Espiard S, Ragazzon B, Bertherat J. Protein kinase A alterations in adrenocortical tumors. Horm Metab Res 2014; 46: 869-875
- 13 Greene EL, Horvath AD, Nesterova M, Giatzakis C, Bossis I, Stratakis CA. In vitro functional studies of naturally occurring pathogenic PRKAR1A mutations that are not subject to nonsense mRNA decay. Hum Mutat 2008; 29: 633-639
- 14 Guillaud Bataille M, Rhayem Y, Sousa SB, Libe R, Dambrun M, Chevalier C, Nigou M, Auzan C, North MO, Sa J, Gomes L, Salpea P, Horvath A, Stratakis CA, Hamzaoui N, Bertherat J, Clauser E. Systematic screening for PRKAR1A gene rearrangement in Carney complex: identification and functional characterization of a new in-frame deletion. Eur J Endocrinol 2014; 170: 151-160
- 15 Groussin L, Jullian E, Perlemoine K, Louvel A, Leheup B, Luton JP, Bertagna X, Bertherat J. Mutations of the PRKAR1A gene in Cushing's syndrome due to sporadic primary pigmented nodular adrenocortical disease. J Clin Endocrinol Metab 2002; 87: 4324-4329
- 16 Meoli E, Bossis I, Cazabat L, Mavrakis M, Horvath A, Stergiopoulos S, Shiferaw ML, Fumey G, Perlemoine K, Muchow M, Robinson-White A, Weinberg F, Nesterova M, Patronas Y, Groussin L, Bertherat J, Stratakis CA. Protein kinase A effects of an expressed PRKAR1A mutation associated with aggressive tumors. Cancer Res 2008; 68: 3133-3141
- 17 Linglart A, Menguy C, Couvineau A, Auzan C, Gunes Y, Cancel M, Motte E, Pinto G, Chanson P, Bougneres P, Clauser E, Silve C. Recurrent PRKAR1A mutation in acrodysostosis with hormone resistance. N Engl J Med 2011; 364: 2218-2226
- 18 Rhayem Y, Le Stunff C, Abdel Khalek W, Auzan C, Bertherat J, Linglart A, Couvineau A, Silve C, Clauser E. Functional Characterization of PRKAR1A Mutations Reveals a Unique Molecular Mechanism Causing Acrodysostosis but Multiple Mechanisms Causing Carney Complex. J Biol Chem 2015; 290: 27816-27828
- 19 Szarek E, Stratakis CA. Phosphodiesterases and Adrenal Cushing in Mice and Humans. Horm Metab Res 2014; 46: 863-868
- 20 Salpea P, Stratakis CA. Carney complex and McCune Albright syndrome: An overview of clinical manifestations and human molecular genetics. Mol Cell Endocrinol 2014; 386: 85-91
- 21 Beuschlein F, Fassnacht M, Assie G, Calebiro D, Stratakis CA, Osswald A, Ronchi CL, Wieland T, Sbiera S, Faucz FR, Schaak K, Schmittfull A, Schwarzmayr T, Barreau O, Vezzosi D, Rizk-Rabin M, Zabel U, Szarek E, Salpea P, Forlino A, Vetro A, Zuffardi O, Kisker C, Diener S, Meitinger T, Lohse MJ, Reincke M, Bertherat J, Strom TM, Allolio B. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N Engl J Med 2014; 370: 1019-1028
- 22 Cao Y, He M, Gao Z, Peng Y, Li Y, Li L, Zhou W, Li X, Zhong X, Lei Y, Su T, Wang H, Jiang Y, Yang L, Wei W, Yang X, Jiang X, Liu L, He J, Ye J, Wei Q, Li Y, Wang W, Wang J, Ning G. Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science 2014; 344: 913-917
- 23 Goh G, Scholl UI, Healy JM, Choi M, Prasad ML, Nelson-Williams C, Kunstman JW, Korah R, Suttorp A-C, Dietrich D, Haase M, Willenberg HS, Stalberg P, Hellman P, Akerstrom G, Bjorklund P, Carling T, Lifton RP. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat Genet 2014; 46: 613-617
- 24 Sato Y, Maekawa S, Ishii R, Sanada M, Morikawa T, Shiraishi Y, Yoshida K, Nagata Y, Sato-Otsubo A, Yoshizato T, Suzuki H, Shiozawa Y, Kataoka K, Kon A, Aoki K, Chiba K, Tanaka H, Kume H, Miyano S, Fukayama M, Nureki O, Homma Y, Ogawa S. Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome. Science 2014; 344: 917-920
- 25 Johnson DA, Akamine P, Radzio-Andzelm E, Madhusudan Taylor SS. Dynamics of cAMP-Dependent Protein Kinase. Chem Rev 2001; 101: 2243-2270
- 26 Knighton D, Zheng J, Ten Eyck L, Ashford V, Xuong N, Taylor S, Sowadski J. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 1991; 253: 407-414
- 27 Diskar M, Zenn H-M, Kaupisch A, Kaufholz M, Brockmeyer S, Sohmen D, Berrera M, Zaccolo M, Boshart M, Herberg FW, Prinz A. Regulation of cAMP-dependent Protein Kinases: The human protein kinase X (PrKX) reveals the role of the catalytic subunit aH-aI loop. J Biol Chem 2010; 285: 35910-35918
- 28 Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP. PKA: lessons learned after twenty years. Biochim Biophys Acta 2013; 1834: 1271-1278
- 29 Carr DW, Stofko-Hahn RE, Fraser ID, Bishop SM, Acott TS, Brennan RG, Scott JD. Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem 1991; 266: 14188-14192
- 30 Kinderman FS, Kim C, von Daake S, Ma Y, Pham BQ, Spraggon G, Xuong N-H, Jennings PA, Taylor SS. A Novel and Dynamic Mechanism for AKAP Binding to RII Isoforms of cAMP-dependent Protein Kinase. Mol Cell 2006; 24: 397-408
- 31 Wong W, Scott JD. AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 2004; 5: 959-970
- 32 Weber W, Hilz H. Stoichiometry of cAMP binding and limited proteolysis of protein kinase regulatory subunits R I and R II. Biochem Biophys Res Commun 1979; 90: 1073-1081
- 33 Taylor SS, Buechler JA, Yonemoto W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 1990; 59: 971-1005
- 34 Zhang P, Smith-Nguyen EV, Keshwani MM, Deal MS, Kornev AP, Taylor SS. Structure and Allostery of the PKA RIIb Tetrameric Holoenzyme. Science 2012; 335: 712-716
- 35 Kim C, Cheng CY, Saldanha SA, Taylor SS. PKA-I Holoenzyme Structure Reveals a Mechanism for cAMP-Dependent Activation. Cell 2007; 130: 1032-1043
- 36 Sjoberg TJ, Kornev AP, Taylor SS. Dissecting the cAMP-inducible allosteric switch in protein kinase A RIa. Protein Sci 2010; 19: 1213-1221
- 37 Smith CM, Radzio-Andzelm E, Madhusudan Akamine P, Taylor SS. The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication. Prog Biophys Mol Biol 1999; 71: 313-341
- 38 Bastidas AC, Deal MS, Steichen JM, Guo Y, Wu J, Taylor SS. Phosphoryl transfer by protein kinase A is captured in a crystal lattice. J Am Chem Soc 2013; 135: 4788-4798
- 39 Bastidas AC, Wu J, Taylor SS. Molecular Features of Product Release for the PKA Catalytic Cycle. Biochemistry 2015; 54: 2-10
- 40 Srivastava Atul K, McDonald Leanna R, Cembran A, Kim J, Masterson Larry R, McClendon Christopher L, Taylor Susan S, Veglia G. Synchronous Opening and Closing Motions Are Essential for cAMP-Dependent Protein Kinase A Signaling. Structure 2014; 22: 1735-1743
- 41 Taylor SS, Yang J, Wu J, Haste NM, Radzio-Andzelm E, Anand G. PKA: a portrait of protein kinase dynamics. Biochim Biophys Acta 2004; 1697: 259-269
- 42 Wu J, Brown SH, von Daake S, Taylor SS. PKA type IIalpha holoenzyme reveals a combinatorial strategy for isoform diversity. Science 2007; 318: 274-279
- 43 Arnold J. Ein Beitrag zu der feineren Structur und dem Chemismus der Nebennieren. Arch Pathol Anatom Physiol Klin Med 1866; 35: 64-107
- 44 Rosol TJ, Yarrington JT, Latendresse J, Capen CC. Adrenal Gland: Structure, Function, and Mechanisms of Toxicity. Toxicol Pathol 2001; 29: 41-48
- 45 Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev 1998; 19: 101-143
- 46 Drouin J, Bilodeau S, Vallette S. Of old and new diseases: genetics of pituitary ACTH excess (Cushing) and deficiency. Clin Genet 2007; 72: 175-182
- 47 Beuschlein F, Fassnacht M, Klink A, Allolio B, Reincke M. ACTH-receptor expression, regulation and role in adrenocortical tumor formation. Eur J Endocrinol 2001; 144: 199-206
- 48 Gallo-Payet N. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH. J Mol Endocrinol 2016; 56: T135-156
- 49 Kojima I, Kojima K, Rasmussen H. Role of calcium and cAMP in the action of adrenocorticotropin on aldosterone secretion. J Biol Chem 1985; 260: 4248-4256
- 50 Weber A, Kapas S, Hinson J, Grant DB, Grossman A, Clark AJL. Functional Characterization of the Cloned Human ACTH Receptor: Impaired Responsiveness of a Mutant Receptor in Familial Glucocorticoid Deficiency. Biochem Biophys Res Commun 1993; 197: 172-178
- 51 Kim C, Xuong NH, Taylor SS. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 2005; 307: 690-696
- 52 Simpson ER, Waterman MR. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol 1988; 50: 427-440
- 53 Stocco DM, Wang X, Jo Y, Manna PR. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol 2005; 19: 2647-2659
- 54 Sewer MB, Dammer EB, Jagarlapudi S. Transcriptional regulation of adrenocortical steroidogenic gene expression. Drug Metab Rev 2007; 39: 371-388
- 55 Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 1993; 365: 855-859
- 56 Rosenberg D, Groussin L, Jullian E, Perlemoine K, Bertagna X, Bertherat J. Role of the PKA-regulated transcription factor CREB in development and tumorigenesis of endocrine tissues. Ann N Y Acad Sci 2002; 968: 65-74
- 57 Cameron EH, Beynon MA, Griffiths K. The role of progesterone in the biosynthesis of cortisol in human adrenal tissue. J Endocrinol 1968; 41: 319-326
- 58 New M, Lekarev O, Lin-Su K, Parsa A, Khattab A, Pina C, Yuen T, Yau M. Congenital Adrenal Hyperplasia. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000
- 59 Clark AJ, Chan LF, Chung TT, Metherell LA. The genetics of familial glucocorticoid deficiency. Best Pract Res Clin Endocrinol Metab 2009; 23: 159-165
- 60 Chida D, Nakagawa S, Nagai S, Sagara H, Katsumata H, Imaki T, Suzuki H, Mitani F, Ogishima T, Shimizu C, Kotaki H, Kakuta S, Sudo K, Koike T, Kubo M, Iwakura Y. Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc Natl Acad Sci USA 2007; 104: 18205-18210
- 61 Coll AP, Challis BG, Yeo GSH, Snell K, Piper SJ, Halsall D, Thresher RR, O'Rahilly S. The effects of proopiomelanocortin deficiency on murine adrenal development and responsiveness to adrenocorticotropin. Endocrinology 2004; 145: 4721-4727
- 62 Hornsby PJ, Gill GN. Hormonal-Control of Adrenocortical Cell-Proliferation - Desensitization to Acth and Interaction between Acth and Fibroblast Growth-Factor in Bovine Adrenocortical Cell-Cultures. J Clin Invest 1977; 60: 342-352
- 63 Mattos GE, Jacysyn JF, Amarante-Mendes GP, Lotfi CFP. Comparative effect of FGF2, synthetic peptides 1-28N-POMC and ACTH on proliferation in rat adrenal cell primary cultures. Cell Tissue Res 2011; 345: 343-356
- 64 Karpac J, Ostwald D, Bui S, Hunnewell P, Shankar M, Hochgeschwender U. Development, maintenance, and function of the adrenal gland in early postnatal proopiomelanocortin-null mutant mice. Endocrinology 2005; 146: 2555-2562
- 65 Fassnacht M, Hahner S, Hansen IA, Kreutzberger T, Zink M, Adermann K, Jakob F, Troppmair J, Allolio B. N-Terminal Proopiomelanocortin Acts as a Mitogen in Adrenocortical Tumor Cells and Decreases Adrenal Steroidogenesis. J Clin Endocrinol Metab 2003; 88: 2171-2179
- 66 Di Dalmazi G, Kisker C, Calebiro D, Mannelli M, Canu L, Arnaldi G, Quinkler M, Rayes N, Tabarin A, Laure Jullié M, Mantero F, Rubin B, Waldmann J, Bartsch DK, Pasquali R, Lohse M, Allolio B, Fassnacht M, Beuschlein F, Reincke M. Novel Somatic Mutations in the Catalytic Subunit of the Protein Kinase A as a Cause of Adrenal Cushing’s Syndrome: A European Multicentric Study. J Clin Endocrinol Metab 2014; 99: E2093-E2100
- 67 Calebiro D, Hannawacker A, Lyga S, Bathon K, Zabel U, Ronchi C, Beuschlein F, Reincke M, Lorenz K, Allolio B, Kisker C, Fassnacht M, Lohse MJ. PKA catalytic subunit mutations in adrenocortical Cushing’s adenoma impair association with the regulatory subunit. Nat Commun 2014; 5: 5680
- 68 Calebiro D, Di Dalmazi G, Bathon K, Ronchi CL, Beuschlein F. cAMP signaling in cortisol producing adrenal adenoma. Eur J Endocrinol 2015; 173: M99-M106
- 69 Gibson RM, Taylor SS. Dissecting the Cooperative Reassociation of the Regulatory and Catalytic Subunits of cAMP-dependent Protein Kinase: Role of Trp-196 in the catalytic subunit. J Biol Chem 1997; 272: 31998-32005
- 70 Honeyman JN, Simon EP, Robine N, Chiaroni-Clarke R, Darcy DG, Lim IIP, Gleason CE, Murphy J, Rosenberg BR, Teegan L, Takacs CN, Botero S, Belote R, Germer S, Emde A-K, Vacic V, Bhanot U, LaQuaglia MP, Simon SM. Detection of a Recurrent DNAJB1-PRKACA Chimeric Transcript in Fibrolamellar Hepatocellular Carcinoma. Science 2014; 343: 1010-1014
- 71 Cheung J, Ginter C, Cassidy M, Franklin MC, Rudolph MJ, Robine N, Darnell RB, Hendrickson WA. Structural insights into mis-regulation of protein kinase A in human tumors. Proc Natl Acad Sci USA 2015; 112: 1374-1379
- 72 Rock R, Mayrhofer JE, Bachmann V, Stefan E. Impact of kinase activating and inactivating patient mutations on binary PKA interactions. Front Pharmacol 2015; 6: 170