B&G Bewegungstherapie und Gesundheitssport 2016; 32(06): 208-214
DOI: 10.1055/s-0042-119081
Wissenschaft
Haug Verlag in Georg Thieme Verlag KG Stuttgart

Diabetes: Geht doch!

Ein Update zu DMT2, körperlicher Aktivität und molekularen Wirkmechanismen
G. Huber
1   Universität Heidelberg, Institut für Sport und Sportwissenschaft
,
M. Köppel
1   Universität Heidelberg, Institut für Sport und Sportwissenschaft
› Author Affiliations
Further Information

Publication History

Eingegangen: 21 September 2016

Angenommen durch Review: 26 September 2016

Publication Date:
19 December 2016 (online)

Zusammenfassung

Diabetes mellitus Typ 2 (DMT2) hat eine erhebliche epidemiologische Bedeutung mit hoher Prävalenz und Inzidenz. Obwohl die körperliche Aktivität schon immer für die Diabetesbehandlung wichtig war, spielt sie in der deutschen diabetischen Versorgungslandschaft eine marginale Rolle. In dem Beitrag wird mit aktuellen Studien auf die differenzierte Relevanz der körperlichen Aktivität in diesem Kontext eingegangen. Neben einem Update zu aktuellen epidemiologischen Untersuchungen werden die wesentlichen molekularbiologischen Befunde zur bewegungsinduzierten Glukoseaufnahme vorgestellt. Diese bilden nach unserer Einschätzung die Basis für eine nachhaltige biopsychosoziale Bewegungstherapie des DMT2.

Summary

Treating diabetes: An update on DMT2, physical activity and molecular mechanisms of action

Insulin dependent diabetes mellitus (DMT2) has a significant epidemiological importance with high prevalence and incidence. Although physical exercise and activity has always been important for the treatment of diabetes, it plays only a marginal role in the health services in Germany. The paper shows with up-to-date studies, the differentiated relevance of physical activity in the treatment of DMT2. In addition to this update on current epidemiological studies, the essential molecular biological mechanisms are presented for exercise-induced glucose uptake. In our opinion, this is the basis for an effective biopsychosocial movement therapy of DMT2.

 
  • Literatur

  • 1 Köster I, Schubert I, Huppertz E. Fortschreibung der KoDiM-Studie: Kosten des Diabetes mellitus 2000–2009. DMW-Deutsche Medizinische Wochenschrift 2012; 137: 1013-1016
  • 2 Diabetes-Hilfe D.. Deutscher Gesundheitsbericht – Diabetes 2015 – Die Bestandsaufnahme. In., Mainz: Kirchheim; 2015
  • 3 Joslin E. A History of Elliott P. Joslin, M.D., Founder, Joslin Diabetes Center.. In; 2016
  • 4 Kurth BM. Erste Ergebnisse aus der „Studie zur Gesundheit Erwachsener in Deutschland“ (DEGS). Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 2012; 55: 980-990
  • 5 Rathmann W, Scheidt-Nave C, Roden M. et al. Type 2 diabetes: prevalence and relevance of genetic and acquired factors for its prediction. KORA 2013; 4: 1999-2001
  • 6 Scheidt-Nave C, Kamtsiuris P, Gößwald A. et al. German health interview and examination survey for adults (DEGS)-design, objectives and implementation of the first data collection wave. BMC Public health 2012; 12: 1
  • 7 Federation ID. IDF diabetes atlas – Seventh Edition. Brüssel: Internation. Diabetes Federation; 2015: 114
  • 8 Weng W, Liang Y, Kimball ES. et al. Decreasing incidence of type 2 diabetes mellitus in the United States, 2007–2012: Epidemiologic findings from a large US claims database. Diabetes research and clinical practice 2016; 117: 111-118
  • 9 Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scandinavian journal of medicine & science in sports 2006; 16: 3-63
  • 10 Pedersen BK, Saltin B. Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports 2015; 25: 1-72
  • 11 Huber G. Effekte eines spezifischen Bewegungsprogramms im Rahmen des DMP Diabetes mellitus Typ 2. B&G Bewegungstherapie und Gesundheitssport 2012; 28: 242-247
  • 12 Lindström J, Peltonen M, Eriksson JG. et al. Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia 2013; 56: 284-293
  • 13 Lindström J, Ilanne-Parikka P, Peltonen M. et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. The Lancet 2006; 368: 1673-1679
  • 14 Balk EM, Earley A, Raman G. et al. Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the Community Preventive Services Task Force. Annals of internal medicine 2015; 163: 437-451
  • 15 Stevens JW, Khunti K, Harvey R. et al. Preventing the progression to type 2 diabetes mellitus in adults at high risk: a systematic review and network meta-analysis of lifestyle, pharmacological and surgical interventions. Diabetes research and clinical practice 2015; 107: 320-331
  • 16 Rejeski WJ, Bray GA, Chen SH. et al. Aging and physical function in type 2 diabetes: 8 years of an intensive lifestyle intervention. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2015; 70: 345-353
  • 17 The Look AHEAD Research Group. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. The Lancet Diabetes & Endocrinology; 2016
  • 18 Wen CP, Wai JP M, Tsai MK. et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. The Lancet 2011; 378: 1244-1253
  • 19 Umpierre D, Ribeiro PA B, Kramer CK. et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. Jama 2011; 305: 1790-1799
  • 20 Pfeiffer AF H, Klein HH. Therapie des Diabetes mellitus Typ 2. Deutsches Ärzteblatt 2014; 69-82
  • 21 Di Loreto C, Fanelli C, Lucidi P. et al. Make Your Diabetic Patients Walk Long-term impact of different amounts of physical activity on type 2 diabetes. Diabetes Care 2005; 28: 1295-1302
  • 22 Aune D, Norat T, Leitzmann M. et al. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. European journal of epidemiology 2015; 30: 529-542
  • 23 Block JD, Bridger WH. The law of initial value in psychophysiology: A reformulation in terms of experimental and theoretical considerations. Annals of the New York Academy of Sciences 1962; 98: 1229-1241
  • 24 Kyu HH, Bachman VF, Alexander LT. et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. bmj 2016; 354: i3857
  • 25 Teixeira de Lemos E, Oliveira J, Páscoa Pinheiro J. et al. Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: benefits in type 2 diabetes mellitus. Oxidative medicine and cellular longevity; 2012
  • 26 Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological reviews 2013; 93: 993-1017
  • 27 Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Advances in physiology education 2014; 38: 308-314
  • 28 Boujard D, Anselme B, Cullin C. et al. Zellkommunikation. In: Boujard D, Anselme B, Cullin C, Raguénès-Nicol C. eds. Zell- und Molekularbiologie im Überblick. Heidelberg: Springer; 2014: 287-306
  • 29 Friedrich K-H, Behrmann I. Zelluläre Signalprozesse. In: Schartl M, Gessler M, Eckardstein A von. eds. Biochemie und Molekularbiologie des Menschen. München: Urban & Fischer; 2009: 631-670
  • 30 Hersberger M, Eckardstein S von, Eckardstein A von. Hormone. In: Schartl M, Gessler M, Eckardstein A von. eds. Biochemie und Molekularbiologie des Menschen. München: Urban & Fischer; 2009: 687-748
  • 31 Staiger H, Stefan N, Kellerer M. Insulin – das wichtigste anabole Hormon. In: Löffler/Petrides. Biochemie und Pathobiochemie. Springer; 2014: 442-457
  • 32 Korat AV A, Willett WC, Hu FB. Diet, lifestyle and genetic risk factors for type 2 diabetes: a review from the nurses’ health study, nurses’ health study 2, and health professionals’ follow-up study. Current nutrition reports 2014; 3: 345-354
  • 33 DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes care 2009; 32: 157-163
  • 34 Martin I, Katz A, Wahren J. Splanchnic and muscle metabolism during exercise in NIDDM patients. American Journal of Physiology-Endocrinology And Metabolism 1995; 269: E583-E590
  • 35 Graw J. Nobelpreis 2007 in Medizin: Herstellung von knockout-Mäusen. Biologie in unserer Zeit 2007; 37: 352-354
  • 36 Hardie DG. The AMP-activated protein kinase pathway–new players upstream and downstream. Journal of cell science 2004; 117: 5479-5487
  • 37 Eckardstein A von, Luley C. Lipidtransport und Regulation des Lipidstoffwechsels. In: Schartl M, Gessler M, Eckardstein S von. eds. Molekularbiologie und Biochemie des Menschen. München: Urban & Fischer; 2009: 518-547
  • 38 Gollhofer A. Muskelphysiologie. In: Mechling H, Munzert J. eds. Handbuch Bewegungswissenschaft – Bewegungslehre. Schorndorf: Hofmann; 2003: 57-80
  • 39 Boujard D, Anselme B, Cullin C. et al. Cytoskelett. In: Zell- und Molekularbiologie im Überblick. Heidelberg: Springer; 2014: 263-286
  • 40 Deshmukh A, Coffey VG, Zhong Z. et al. Exercise-induced phosphorylation of the novel Akt substrates AS160 and filamin A in human skeletal muscle. Diabetes 2006; 55: 1776-1782
  • 41 Kingwell BA, Formosa M, Muhlmann M. et al. Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects. Diabetes 2002; 51: 2572-2580
  • 42 McArdle WD, Katch FI, Katch VL. eds. Sports and exercise nutrition. 4.. ed. Philadelphia [u. a.]: Lippincott Williams & Wilkins; 2013. XXIX, 681 S
  • 43 Patti ME, Butte AJ, Crunkhorn S. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proceedings of the National Academy of Sciences 2003; 100: 8466-8471
  • 44 Hood DA, Uguccioni G, Vainshtein A. et al. Mechanisms of Exercise-Induced Mitochondrial Biogenesis in Skeletal Muscle: Implications for Health and Disease. Comprehensive Physiology; 2011
  • 45 Meex RC R, Schrauwen-Hinderling VB, Moonen-Kornips E. et al. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 2010; 59: 572-579
  • 46 McCoy M, Proietto J, Hargreves M. Effect of detraining on GLUT-4 protein in human skeletal muscle. Journal of Applied Physiology 1994; 77: 1532-1536
  • 47 Little JP, Gillen JB, Percival ME. et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of Applied Physiology 2011; 111: 1554-1560