Horm Metab Res 2016; 48(12): 787-794
DOI: 10.1055/s-0042-121421
Review
© Georg Thieme Verlag KG Stuttgart · New York

Thyroid Function in Human Obesity: Underlying Mechanisms

L. C. Fontenelle
1   Department of Nutrition, Federal University of Piauí, Teresina, Piauí, Brazil
,
M. M. Feitosa
1   Department of Nutrition, Federal University of Piauí, Teresina, Piauí, Brazil
,
J. S. Severo
1   Department of Nutrition, Federal University of Piauí, Teresina, Piauí, Brazil
,
T. E. C. Freitas
1   Department of Nutrition, Federal University of Piauí, Teresina, Piauí, Brazil
,
J. B. S. Morais
1   Department of Nutrition, Federal University of Piauí, Teresina, Piauí, Brazil
,
F. L. Torres-Leal
2   Department of Biophysics and Physiology, Federal University of Piauí, Campus Ministro Petrônio Portela, Ininga, Teresina, Piauí, Brazil
,
G. S. Henriques
3   Department of School of Nursing, Federal University of Minas Gerais, Santa Efigênia, Belo Horizonte, Minas Gerais, Brazil
,
D. do Nascimento Marreiro
› Author Affiliations
Further Information

Publication History

received 23 July 2016

accepted 03 November 2016

Publication Date:
06 December 2016 (online)

Abstract

Obesity is associated with several metabolic and endocrine disorders; and changes in plasma concentrations, secretion patterns, and clearance of various hormones are observed in obese patients. In this context, recent research has shown that overweight can influence the function of the thyroid gland, usually leading to increased thyrotropin concentrations and changes in the ratio between the hormones triiodothyronine and thyroxine, though within the normal range. The etiology of these changes is still unclear; however, several mechanisms have been proposed including the adaptive process to increase energy expenditure, hyperleptinemia, changes in the activity of deiodinases, the presence of thyroid hormones resistance, chronic low-grade inflammation, and insulin resistance. Although the clinical implications have not been clarified, studies suggest that these changes in the thyroid function of obese individuals may contribute to the worsening of metabolic complications and the development of diseases in the thyroid gland.

 
  • References

  • 1 Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011; 29: 415-445
  • 2 Rupérez AI, Gil A, Aguilera CM. Genetics of oxidative stress in obesity. Int J Mol Sci 2014; 15: 3118-1144
  • 3 Bays HE, González-Campoy MJ, Bray GA, Kitabchi AE, Bergman DA, Schorr AB, Rodbard HW, Henry RR. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther 2008; 6: 343-368
  • 4 Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 2013; 93: 1-21
  • 5 Álvarez-Castro P, Sangiao-Alvarellos S, Brandón-Sandá I, Cordido F. Función endocrina en la obesidad. Endocrinol Nutr 2011; 58: 422-432
  • 6 Biggs RB, Urzúa EA, González MM. El tejido graso como modulador endocrino: cambios hormonales asociados a la obesidad. Rev Med Chile 2010; 138: 1294-1301
  • 7 Bétry C, Challan-Belval MA, Bernard A, Charrié A, Drai J, Laville M, Thivolet C, Disse E. Increased TSH in obesity: evidence for a BMI-independent association with leptin. Diabetes Metab 2015; 41: 248-251
  • 8 Kitahara CM, Platz EA, Ladenson PW, Mondul AM, Menke A, González AB. Body fatness and markers of thyroid function among U.S. men and women. PLoS One 2012; 7: e34979
  • 9 Lambrinoudaki I, Armeni E, Rizos D, Georgiopoulos G, Athanasouli F, Triantafyllou N, Panoulis K, Augoulea A, Creatsa M, Alexandrou A, Alevizaki M, Stamatelopoulos K. Indices of adiposity and thyroid hormones in euthyroid postmenopausal women. Eur J Endocrinol 2015; 173: 237-245
  • 10 Muscogiuri G, Sorice GP, Mezza T, Prioletta A, Lassandro AP, Pirronti T, Della Casa S, Pontecorvi A, Giaccari A. High-normal TSH values in obesity: is it insulin resistance or adipose tissue’s guilt?. Obesity (Silver Spring) 2013; 21: 101-106
  • 11 Ren R, Jiang X, Zhang X, Guan Q, Yu C, Li Y, Gao L, Zhang H, Zhao J. Association between thyroid hormones and body fat in euthyroid subjects. Clin Endocrinol (Oxf) 2014; 80: 585-590
  • 12 Marcello MA, Cunha LL, Batista FA, Ward LS. Obesity and thyroid cancer. Endocr Relat Cancer 2014; 21: T255-T271
  • 13 Oh JY, Sung YA, Lee HJ. Elevated thyroid stimulating hormone levels are associated with metabolic syndrome in euthyroid young women. Korean J Intern Med 2013; 28: 180-186
  • 14 Roef GL, Rietzschel ER, Van Daele CM, Taes YE, De Buyzere ML, Gillebert TC, Kaufman JM. Triiodothyronine and free thyroxine levels are differentially associated with metabolic profile and adiposity-related cardiovascular risk markers in euthyroid middle-aged subjects. Thyroid 2014; 24: 223-231
  • 15 Taylor PN, Razvi S, Pearce SH, Dayan CM. A review of the clinical consequences of variation in thyroid function within the reference range. J Clin Endocrinol Metab 2013; 98: 3562-3571
  • 16 Wang X, Liu H, Chen J, Huang Y, Li L, Rampersad S, Qu S. Metabolic characteristics in obese patients complicated by mild thyroid hormone deficiency. Horm Metab Res 2016; 48: 331-337
  • 17 Vaisman M, Rosenthal D, Carvalho DP. Enzimas envolvidas na organificação tireoidiana do iodo. Arq Bras Endocrinol Metab 2004; 48: 7-13
  • 18 Hall JE. Hormônios metabólicos da tireoide. In: Hall JE. Tratado de fisiologia médica. Rio de Janeiro: Elsevier; 2011: 955-967
  • 19 Abdalla SM, Bianco AC. Defending plasma T3 is a biological priority. Clin Endocrinol (Oxf.) 2014; 81: 633-641
  • 20 Visser TJ, Peeters RP. Metabolism of thyroid hormone. In: De Groot LJ. (ed) Endotext – Thyroid disease manager [Internet]. South Dartmouth: MDText.com; 2012
  • 21 Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol 2016; 12: 111-121
  • 22 Marsili A, Zavacki AM, Harney JW, Larsen PR. Physiological role and regulation of iodothyronine deiodinases: a 2011 update. J Endocrinol Invest 2011 34: 395-407
  • 23 Hoermann R, Midgley JEM, Larisch R, Dietrich JW. Homeostatic control of the thyroid-pituitary axis: perspectives for diagnosis and treatment. Front Endocrinol (Lausanne) 2015; 6: 177
  • 24 Mullur R, Liu Y, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 2014; 94: 355-382
  • 25 Hoermann R, Midgley JEM, Larisch R, Dietrich JW. Integration of peripheral and glandular regulation of triiodothyronine production by thyrotropin in untreated and thyroxine-treated subjects. Horm Metab Res 2015; 47: 674-680
  • 26 Little AG. A review of the peripheral levels of regulation by thyroid hormone. J Comp Physiol B 2016; 186: 677-688
  • 27 Pearce EN. Thyroid hormone and obesity. Curr Opin Endocrinol Diabetes Obes 2012; 19: 408-413
  • 28 Santini F, Marzullo P, Rotondi M, Ceccarini G, Pagano L, Ippolito S, Chiovato L, Biondi B. The crosstalk between thyroid gland and adipose tissue: signal integration in health and disease. Eur J Endocrinol 2014; 171: R137-R152
  • 29 Bjergved L, Jørgensen T, Perrild H, Laurberg P, Krejbjerg A, Ovesen L, Rasmussen LB, Knudsen N. Thyroid function and body weight: a community-based longitudinal study. PLoS One 2014; 9: e93515
  • 30 Soriguer F, Valdes S, Morcillo S, Esteva I, Almaraz MC, Adana MSR, Tapia MJ, Dominguez M, Gutierrez-Repiso C, Rubio-Martin E, Garrido-Sanchez L, Perez V, Garriga MJ, Rojo-Martinez G, Garcia-Fuentes E. Thyroid hormone levels predict the change in body weight: a prospective study. Eur J Clin Invest 2011; 41: 1202-1209
  • 31 Ortega E, Pannacciulli N, Bogardus C, Krakoff J. Plasma concentrations of free triiodothyronine predict weight change in euthyroid persons. Am J Clin Nutr 2007; 85: 440-445
  • 32 Knudsen N, Laurberg P, Rasmussen LB, Bülow I, Perrild H, Ovesen L, Jørgensen T. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab 2005; 90: 4019-4024
  • 33 Bétry C, Challan-Belval MA, Bernard A, Charrié A, Drai J, Laville M, Thivolet C, Disse E. Increased TSH in obesity: evidence for a BMI-independent association with leptin. Diabetes Metab 2015; 41: 248-251
  • 34 Bakiner O, Bozkirli E, Cavlak G, Ozsahin K, Ertorer E. Are plasma thyroid-stimulating hormone levels associated with degree of obesity and metabolic syndrome in euthyroid obese patients? A turkish cohort study. Endocrinol 2014; 803028
  • 35 Sakurai M, Nakamura K, Miura K, Yoshita K, Takamura T, Nagasawa S, Morikawa Y, Ishizaki M, Kido T, Naruse Y, Nakashima M, Nogawa K, Suwazono Y, Nakagawa H. Association between a serum thyroid-stimulating hormone concentration within the normal range and indices of obesity in Japanese men and women. Intern Med 2014; 53: 669-674
  • 36 Shinkov A, Borissova A, Kovatcheva R, Atanassova I, Vlahov J, Dakovska L. The prevalence of the metabolic syndrome increases through the quartiles of thyroid stimulating hormone in a population-based sample of euthyroid subjects. Endocrinol Metab 2014; 58: 926-932
  • 37 Kouidhi S, Berhouma R, Ammar M, Rouissi K, Jarboui S, Clerget-Froidevaux M, Seugnet I, Abid H, Bchir F, Demeneix B, Guissouma H, Elgaaied AB. Relationship of thyroid function with obesity and type 2 diabetes in euthyroid Tunisian subjects. Endocr Res 2013; 38: 15-23
  • 38 Milionis A, Milionis C. Correlation between Body Mass Index and thyroid function in euthyroid individuals in Greece. Biomarkers 2013; 651494
  • 39 Solanki A, Bansal S, Jindal S, Saxena V, Shukla US. Relationship of serum thyroid stimulating hormone with body mass index in healthy adults. Indian J Endocrinol Metab 2013; 17 (Suppl. 01) 167-169
  • 40 Tarcin O, Abanonu GB, Yazici D, Tarcin O. Association of metabolic syndrome parameters with TT3 and FT3/FT4 ratio in obese Turkish population. Metab Syndr Relat Disord 2012; 10: 137-142
  • 41 Eray E, Sari F, Ozdem S, Sari R. Relationship between thyroid volume and iodine, leptin, and adiponectin in obese women before and after weight loss. Med Princ Pract 2011; 20: 43-46
  • 42 Lee YK, Kim JE, Oh HJ, Park KS, Kim SK, Park SW, Kim MJ, Cho YW. Serum TSH level in healthy Koreans and the association of TSH with serum lipid concentration and metabolic syndrome. Korean J Intern Med 2011; 26: 432-439
  • 43 Ambrosi B, Masserini B, Iorio L, Delnevo A, Malavazos AE, Morricone L, Sburlati LF, Orsi E. Relationship of thyroid function with body mass index and insulin-resistance in euthyroid obese subjects. J Endocrinol Invest 2010; 33: 640-643
  • 44 Nam JS, Cho M, Park JS, Ahn CW, Cha BS, Lee EJ, Lim SK, Kim KR, Lee HC. Triiodothyronine level predicts visceral obesity and atherosclerosis in euthyroid, overweight and obese subjects: T3 and visceral obesity. Obes Res Clin Pract 2010; 4: e247-e342
  • 45 Alevizaki M, Saltiki K, Voidonikola P, Mantzou E, Papamichael C, Stamatelopoulos K. Free thyroxine is an independent predictor of subcutaneous fat in euthyroid individuals. Eur J Endocrinol 2009; 161: 459-465
  • 46 Rotondi M, Leporati P, Manna A, Pirali B, Mondello T, Fonte R, Magri F, Chiovato L. Raised serum TSH levels in patients with morbid obesity: is it enough to diagnose subclinical hypothyroidism?. Eur J Endocrinol 2009; 160: 403-408
  • 47 Shon HS, Jung ED, Kim SH, Lee JH. Free T4 is negatively correlated with body mass index in euthyroid women. Korean J Intern Med 2008; 23: 53-57
  • 48 Bastemir M, Akin F, Alkis E, Kaptanoglu B. Obesity is associated with increased serum TSH level, independent of thyroid function. Swiss Med Wkly 2007; 137: 431-434
  • 49 Pergola G, Ciampolillo A, Paolotti S, Trerotoli P Giorgino Free triiodothyronine and thyroid stimulating hormone are directly associated with waist circumference, independently of insulin resistance, metabolic parameters and blood pressure in overweight and obese women. Clin Endocrinol (Oxf.) 2007; 67: 265-269
  • 50 Manji N, Boelaert K, Sheppard MC, Holder RL, Gough SC, Franklyn JA. Lack of association between serum TSH or free T4 and body mass index in euthyroid subjects. Clin Endocrinol (Oxf.) 2006; 64: 125-128
  • 51 Michalaki MA, Vagenakis AG, Leonardou AS, Argentou MN, Habeos IG, Makri MG, Psyrogiannis AI, Kalfarentzos FE, Kyriazopoulou VE. Thyroid function in humans with morbid obesity. Thyroid 2006; 16: 73-78
  • 52 Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti F. Relationship of thyroid function with body mass index, leptin, insulin sensitivity and adiponectin in euthyroid obese women. Clin Endocrinol (Oxf.) 2005; 62: 487-491
  • 53 Lauberg P, Knudsen N, Andersen S, Carlé A, Pedersen IB, Karmisholt J. Thyroid function and obesity. Eur Thyroid J 2012; 1: 159-167
  • 54 Lips MA, Pijl H, van Klinken JB, de Groot GH, Janssen IM, Ramshorst BV, BAV Wagensveld, Swank DJ, Dielen FV, JWA Smit. Roux-en-Y gastric bypass and calorie restriction induce comparable time-dependent effects on thyroid hormone function tests in obese female subjects. Eur J Endocrinol 2013; 169: 339-347
  • 55 Nannipieri M, Cecchetti F, Anselmino M, Camastra S, Niccolini P, Lamacchia M, Rossi M, Iervasi G, Ferrannini E. Expression of thyrotropin and thyroid hormone receptors in adipose tissue of patients with morbid obesity and/or type 2 diabetes: effects of weight loss. Int J Obes (Lond.) 2009; 33: 1001-1006
  • 56 Pacifico L, Anania C, Ferraro F, Andreoli GM, Chiesa C. Thyroid function in childhood obesity and metabolic comorbidity. Clin Chim Acta 2012; 413: 396-405
  • 57 Reinehr T. Obesity and thyroid function. Mol Cell Endocrinol 2010; 316: 165-171
  • 58 Vaitkus JA, Farrar JS, Celi FS. Thyroid hormone mediated modulation of energy expenditure. Int J Mol Sci 2015; 16: 16158-16175
  • 59 Carneiro IP, Elliott SA, Siervo M, Padwal R, Bertoli S, Battezzati A, Prado CM. Is obesity associated with altered energy expenditure?. Adv Nutr 2016; 7: 476-487
  • 60 Spadafranca A, Cappelletti C, Leone A, Vignati L, Battezzati A, Bedogni G, Bertoli S. Relationship between thyroid hormones, resting energy expenditure and cardiometabolic risk factors in euthyroid subjects. Clin Nutr 2015; 34: 674-678
  • 61 Wright TG, Dawson B, Jalleh G, Guelfi KJ. Influence of hormonal profile on resting metabolic rate in normal, overweight and obese individuals. Ann Nutr Metab 2015; 66: 162-167
  • 62 Kurylowicz A, Jonas M, Lisik W, Jonas M, Wicik ZA, Wierzbicki Z, Chmura A, Puzianowska-Kuznicka M. Obesity is associated with a decrease in expression but not with the hypermethylation of thermogenesis-related genes in adipose tissues. J Transl Med 2015; 13: 31
  • 63 Ghamari-Langroudi M, Vella KR, Srisai D, Sugrue ML, Hollenberg AN, Cone RD. Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity. Mol Endocrinol 2010; 24: 2366-2381
  • 64 Hollenberg AN. The role of the thyrotropin-releasing hormone (TRH) neuron as a metabolic sensor. Thyroid 2008; 18: 131-139
  • 65 Sande-Lee S, Velloso LA. Disfunção hipotalâmica na obesidade. Arq Bras Endocrinol Metab 2012; 56: 341-350
  • 66 Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, Glavas MM, Grayson BE, Perello M, Nillni EA, Grove KL, Cowley MA. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 2007; 5: 181-194
  • 67 Münzberg H, Flier JF, Bjørbæk C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 2004; 145: 4880-4889
  • 68 Perello M, Çakir I, Cyr NE, Romero A, Stuart RC, Chiappini F, Hollenberg AN, Nillni EA. Maintenance of the thyroid axis during diet-induced obesity in rodents is controlled at the central level. Am J Physiol Endocrinol Metab 2010; 299: E976-E989
  • 69 Nillni EA. Minireview: regulation of prohormone convertases in hypothalamic neurons: implications for prothyrotropin-releasing hormone and proopiomelanocortin. Endocrinology 2007; 148: 4191-4200
  • 70 Cabanelas A, Lisboa PC, Moura EG, Pazos-Moura CC. Acute effects of leptin on 5’-deiodinases are modulated by thyroid state of fed rats. Horm Metab Res 2007; 39: 818-822
  • 71 Araújo RL, Carvalho DP. Bioenergetic impact of tissue-specific regulation of iodothyronine deiodinases during nutritional imbalance. J Bioenerg Biomembr 2011; 43: 59-65
  • 72 Araújo RL, Andrade BM, Padrón AS, Gaidhu MP, Perry RLS, Carvalho DP, Ceddia RB. High-fat diet increases thyrotropin and oxygen consumption without altering circulating 3,5,3′-Triiodothyronine (T3) and thyroxine in rats: the role of iodothyronine deiodinases, reverse T3 production, and whole-body fat oxidation. Endocrinology 2010; 151: 3460-3469
  • 73 Jílková ZM, Pavelka S, Flachs P, Hensler M, Kůs V, Kopecký J. Modulation of type I iodothyronine 5′-deiodinase activity in white adipose tissue by nutrition: possible involvement of leptin. Physiol Res 2010; 59: 561-569
  • 74 Ortega FJ, Jílková ZM, Moreno-Navarrete JM, Pavelka S, Rodriguez-Hermosa JI, Kopecký J, Fernández-Real JM. Type I iodothyronine 5’-deiodinase mRNA and activity is increased in adipose tissue of obese subjects. Int J Obes (Lond.) 2012; 36: 320-324
  • 75 Duntas LH, Biondi B. The interconnections between obesity, thyroid function, and autoimmunity: the multifold role of leptin. Thyroid 2013; 23: 646-653
  • 76 Santini F, Galli G, Maffei M, Fierabracci P, Pelosini C, Marsili A, Giannetti M, Castagna MG, Checchi S, Molinaro E, Piaggi P, Pacini F, Elisei R, Vitti P, Pinchera A. Acute exogenous TSH administration stimulates leptin secretion in vivo. Eur J Endocrinol 2010; 163: 63-67
  • 77 Oliveira M, Síbio MT, Olimpio RMC, Moretto FCF, Luvizotto RAM, Nogueira CR. Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes. Einstein 2015; 13: 72-78
  • 78 Fernández-Real JM, Corella D, Goumidi L, Mercader JM, Valdés S, Rojo-Martínez G, Ortega F, Martinez-Larrad M-T, Gómez-Zumaquero JM, Salas-Salvadó J, Martinez-González MA, Covas MI, Botas P, Delgado E, Cottel D, Ferrieres J, Amouyel P, Ricart W, Ros E, Meirhaeghe A, Serrano-Rios M, Soriguer F, Estruch R. Thyroid hormone receptor alpha gene variants increase the risk of developing obesity and show gene–diet interactions. Int J Obes (Lond.) 2013; 37: 1499-1505
  • 79 Bairras C, Redonnet A, Dabadie H, Gin H, Atgie C, Pallet V, Higueret P, Nöel-Suberville C. RARγ and TRβ expressions are decreased in PBMC and SWAT of obese subjects in weight gain. J Physiol Biochem 2010; 66: 29-37
  • 80 Ortega FJ, Moreno-Navarrete JM, Ribas V, Esteve E, Rodriguez-Hermosa JI, Ruiz B, Peral B, Ricart W, Zorzano A, Fernández-Real JM. Subcutaneous fat shows higher thyroid hormone receptor-α1 gene expression than omental fat. Obesity 2009; 17: 2134-2141
  • 81 Lu S, Guan Q, Liu Y, Wang H, Xu W, Li X, Fu Y, Gao L, Zhao J, Wang X. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity. Lipids Health Dis 2012; 11: 17
  • 82 Chen H, Zhanga H, Tang W, Xi Q, Liu X, Duan Y, Liu C. Thyroid function and morphology in overweight and obese children and adolescents in a Chinese population. J Pediatr Endocr Met 2013; 26: 489-496
  • 83 Ajjan RA, Watson PF, Findlay C, Metcalfe RA, Crisp M, Ludgate M, Weetman AP. The sodium iodide symporter gene and its regulation by citokines found in autoimmunity. J Endoncrinol 1998; 158: 351-308
  • 84 Schumm-Draeger PM. Sodium/iodide symporter (NIS) and cytokines. Exp Clin Endocrinol Diabetes 2001; 109: 32-44
  • 85 Longhi S, Radetti G. Thyroid function and obesity. J Clin Res Pedriatr Endocrinol 2013; 5 (Suppl. 01) 40-44
  • 86 Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995; 332: 1351-1362
  • 87 Rotondi M, Cappelli C, Leporati P, Chytiris S, Zerbini F, Fonte R, Magri F, Castellano M, Chiovato L. A hypoechoic pattern of the thyroid at ultrasound does not indicate autoimmune thyroid diseases in patients with morbid obesity. Eur J Endocrinol 2010; 163: 105-109
  • 88 Isozaki O, Tsushima T, Nozoe Y, Miyakawa M, Takano K. Leptin regulation of the thyroids: negative regulation on thyroid hormone levels in euthyroid subjects and inhibitory effects on iodide uptake and Na+/I- symporter mRNA expression in rat FRTL-5 cells. Endocr J 2004; 51: 415-423
  • 89 Jakobs TC, Mentrup B, Schmutzler C, Dreher I, Köhrle J. Proinflammatory cytokines inhibit the expression and function of human type I 5’-deiodinase in HepG2 hepatocarcinoma cells. Eur J Endocrinol 2002; 146: 559-566
  • 90 Boelen A, Kwakkel J, Alkemade A, Renckens R, Kaptein E, Kuiper G, Wiersinga WM, Visser TJ. Induction of type 3 deiodinase activity in inflammatory cells of mice with chronic local inflammation. Endocrinology 2005; 146: 5128-5134
  • 91 Kwakkel J, Surovtseva OV, Vries EM, Stap J, Fliers E, Boelen A. A novel role for the thyroid hormone-activating enzyme type 2 deiodinase in the inflammatory response of macrophages. Endocrinology 2014; 155: 2725-2734
  • 92 Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity?. Curr Opin Endocrinol Diabetes Obes 2012; 19: 81-87
  • 93 Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev 2016; 96: 1169-1209
  • 94 Galofré JC, Pujante P, Abreu C, Santos S, Guillen-Grima F, Frühbeck G, Salvador J. Relationship between thyroid-stimulating hormone and insulin in euthyroid obese men. Ann Nutr Metab 2008; 53: 188-194
  • 95 Gavin L, Cavalieri R, Moeller M. Glucose and insulin reverse the effects of fasting on 3,5,3′-triiodothyronine neogenesis in primary cultures of rat hepatocytes. Endocrinology 1987; 121: 858-864
  • 96 Sorisky A, Antunes TT, Gagnon A. The adipocyte as a novel TSH Target. Mini Rev Med Chem 2008; 8: 91-96
  • 97 Felske D, Gagnon A, Sorisky A. Interacting effects of TSH and insulin on human differentiated adipocytes. Horm Metab Res 2015; 47: 681-685