Exp Clin Endocrinol Diabetes 2017; 125(04): 213-217
DOI: 10.1055/s-0042-123036
Review
© Georg Thieme Verlag KG Stuttgart · New York

Diabetes Mellitus and Bone Metabolism

Christian Kasperk
1   Medizinische Universitätsklinik Heidelberg, Abteilung Innere Medizin I und Klinische Chemie, INF, Heidelberg
,
Carmen Georgescu
4   Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Rumänien
,
Peter Nawroth
1   Medizinische Universitätsklinik Heidelberg, Abteilung Innere Medizin I und Klinische Chemie, INF, Heidelberg
2   Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Cancer, Ingolstädter Landstraße, Neuherberg
3   Deutsches Diabetes Zentrum (DDZ), an der Heinrich Heine Universität Düsseldorf, Auf’m Hennekamp, Düseldorf
› Author Affiliations
Further Information

Publication History

received 19 July 2016
first decision 12 October 2016

accepted 02 December 2016

Publication Date:
10 January 2017 (online)

Abstract

Diabetes mellitus and bone metabolism affect mesenchymal tissues and have numerous epidemiological and pathophysiological associations in common. Diabetes mellitus affects bone metabolism and increases fracture risk. The pathophysiological mechanims how type 1 and type 2 diabetes impair bone metabolism and bone strength may differ which is outlined in this review. Direct metabolic effects in additon to centrally controlled endocrine loops exert suppressive effects on bone formation and may also stimulate bone Resorption. Decreased bone formation in combination with increased bone resorption strongly increases fracture risk.

 
  • References

  • 1 Yang W, Dall TM, Halder P et al. American diabetes association: economic costs of diabetes in the US in 2012. Diabetes Care 2013; 36: 1033-1046
  • 2 von der Recke P, Hansen MA, Hassager C. The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 1999; 106: 273-278
  • 3 Center JR, Nguyen TV, Schneider D et al. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 1999; 353: 878-882
  • 4 Naves M, Rodriquez-Garcia M, Diaz-Lopez JB et al. Progression of vascular calcification is associated with greater bone loss and increased bone fractures. Osteoporosis International 2008; 19: 1161-1166
  • 5 Kuro-o M, Matsumura Y, Aizawa H et al. Nabeshima Yi Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390: 45-51
  • 6 Abrahamsen B, van Staa T, Ariely R et al. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporosis International 2009; 20: 1633-1650
  • 7 Li C, Liu C, Lin W et al. Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan diabetes cohort study. J Bone Min Res 2015; 30: 1338-1346
  • 8 Melton LJ, Leibson CL, Achenbach SJ et al. Fracture risk in type 2 Diabetes: update of a population based study. JBMR 2008; 23: 1334-1342
  • 9 Schneider ALC, Williams EK, Brancati FL et al. Diabetes and risk of fracture related hospitalization: t he atherosclerosis risk in communities study. Diabetes Care 2013; 36: 1153-1158
  • 10 Joshi A, Varthakavi P, Chadha M et al. A study of bone mineral density and its determinants in type 1 diabetes mellitus. J Osteoporosis 2013 article ID 397814
  • 11 Wedrychowicz A, Stec M, Sztefko K et al. Associations between bone, fat tissie and metabolic control in children and adolescents with type 1 diabetes mellitus. Exp Clin Endocrinol Diabetes 2014; 122: 491-495
  • 12 Thrailkill KM, Lumpkin CK, Bunn RC et al. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 2005; 289: E735-E745
  • 13 Melton LJ, Riggs BL, Leibson CL et al. A bone structural basis for fracture risk in diabetes. JCEM 2008; 93: 4804-4809
  • 14 Hadjidakis D, Androulakis I, Mylonakis AM et al. Diabetes in postmenopause: different influence on bone mass according to age and disease duration. Exp Clin Endocrinol Diabetes 2009; 117: 199-204
  • 15 Ma L, Oei L, Jiang L et al. Association between bone mineral density and type 2 diabetes mellitus: a meta analysis of observational studies. Eur J Epidemiol 2012; 27: 319-332
  • 16 Bonds DE, Larson JC, Schwartz AV et al. Risk of fracture in women with type 2 diabetes: the women’s health initiative observational study. J Clin Endocrinology Metabolism 2006; 91: 3404-3410
  • 17 Janghorbani M, van Dam RM, Willett WC et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 2007; 166: 495-505
  • 18 Dytfeld J, Michalak M. Type 2 diabetes and risk of low enrgy fractures in postmenopausal women: meta-analysis of observational studies. Aging Clin Exp Res 2016 online
  • 19 Schwartz A, Vittinghoff E, Bauer DC et al. Assiciation of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 2011; 305: 2184-2192
  • 20 Oei L, Zillikens MC, Dehghan A et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control. Diabetes Care 2013; 36: 1619-1628
  • 21 Burghardt AJ, Issever AS, Schwartz AV et al. High resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. JCEM 2010; 95: 5045-5055
  • 22 Yeni YN, Brown CU, Wang Z et al. The influence of boen morphology on fracture toughness of the femur and tibia. Bone 1997; 21: 453-459
  • 23 Barth RW, Williams JL, Kaplan FS. Osteon morphometry in females with femoral neck fractures. Clin Orthopaedics Rel Res 1992; 283: 178-186
  • 24 Roscher P, Rinnerthaler S, Yates J et al. Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 2001; 29: 185-191
  • 25 Borah Dufresne T, Nurre J. et al. Risedronate reduces intracortical porosity in women with osteoporosis. JBMR 2010; 25: 41-47
  • 26 Keegan THM, Schwartz AV, Bauer DC et al. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care 2004; 27: 1547-1553
  • 27 Hernandez RK, Do TP, Critchlow CW et al. Patient related risk factors for fracture lealing complications in the United Kingdom General Practice Research Database. Acta Orthopaedica 2012; 83: 653-660
  • 28 Farr JN, Drake MT, Amin S et al. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. JBMR 2014; 29: 787-795
  • 29 Tang SY, Allen MR, Philipps R et al. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1 year treatment with risedronate or alendronate. Osteoporosis International 2009; 20: 887-894
  • 30 Furst JR, Bandeira LC, Wen-Wei F et al. Advanced glycation endproducts and bone material strength in type 2 diabetes. JCEM 2016; 101: 2502-2510
  • 31 Farlay D, Armas LA, Gineyts E et al. Nonenzymatic glycation and degree of mineralization are higher in bone from fractured patients with type 1 diabetes mellitus. J Bone Min Res 2016; 31: 190-196
  • 32 Yamamoto M, Yamaguchi T, Yamauchi M et al. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with Type 2 diabetes mellitus. J Clin Endocrinol Metab 2008; 93: 1013-1019
  • 33 Schwartz AV, Garnero P, Hillier TA et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. JCEM 2009; 94: 2380-2386
  • 34 Kume S, Kato S, Yamagishi S et al. Advanced glycation and products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage and bone. JBMR 2005; 20: 1647-1658
  • 35 Avila C, Huang RJ, Stevens MV et al. Platelet mitochondrial dysfunction is evident in type 2 diabetes in association with modifications of mitochondrial anti-oxidant stress proteins. Exp Clin Endocrinol Diabetes 2012; 120: 248-251
  • 36 Schwartz AV, Sigurdsson S, Hue TF et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab 2013; 98: 2294-2300
  • 37 Gennari L, Merlotti D, Valenti R et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. JCEM 2012; 97: 1737-1744
  • 38 Dobnig H, Piswanger-Sölkner JC, Roth M et al. Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. JCEM 2006; 91: 3355-3363
  • 39 Lee NK, Sowa H, Hinoi E et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130: 456-469
  • 40 Lee N, Karsenty G. Reciprocal regulation of bone and energy metabolism. Trends in Endocrinology and Metabolism 2008; 19: 161-166
  • 41 Zhao L, Jiang H, Papasian CJ et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. JBMR 2008; 23: 17-29
  • 42 Khan MP, Singh AK, Joharapurkar AA et al. Pathophysiological mechanism of bone loss in type 2 diabetes involves inverse regulation of osteoblast function by PGC-1alpha and skeletal muscle atrogens: AdipoR1 as potential target for reversing diabetes induced osteopenia. Diabetes 2015; 64: 2609-2623
  • 43 Liang H, Ward WF. PBGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 2006; 30: 145-151
  • 44 Hara K, Hirowatari Y, Shimura Y et al. Sserotonin levels in platelet poor plasma and whole blood in people with type 2 diabetes with chronic kidney disease. Diabetes Res Clin Pract 2011; 94: 167-171
  • 45 Rosen C. Serotonin rising – the bone, brain, bowel connection. NEJM 2009; 360: 957-959
  • 46 Ducy P, Karsenty G. The two faces of serotonin in bone biology. J Cell Biol 2010; 191: 7-13
  • 47 Karsenty G, Oury F. The central regulation of bone mass, the first link between bone remodeling and enrgy metabolism. JCEM 2010; 95: 4795-4801
  • 48 Chen XX, Yang T. Roles of leptin in bone metabolism and bone diseases. J Bone Min Metab 2015; 33: 474-485
  • 49 Moerman EJ, Teng K, Lipschitz DA et al. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-y2 transcription factor and TGFß/BMP signaling pathways. Agin Cell 2004; 3: 379-389
  • 50 Justesen J, Stenderup K, Ebbesen EN et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001; 2: 165-171