Subscribe to RSS
DOI: 10.1055/s-0042-1742753
Technical Update on MR Neurography
Abstract
Imaging evaluation of peripheral nerves (PNs) is challenging. Magnetic resonance imaging (MRI) and ultrasonography are the modalities of choice in the imaging assessment of PNs. Both conventional MRI pulse sequences and advanced techniques have important roles. Routine MR sequences are the workhorse, with the main goal to provide superb anatomical definition and identify focal or diffuse nerve T2 signal abnormalities. Selective techniques, such as three-dimensional (3D) cranial nerve imaging (CRANI) or 3D NerveVIEW, allow for a more detailed evaluation of normal and pathologic states. These conventional pulse sequences have a limited role in the comprehensive assessment of pathophysiologic and ultrastructural abnormalities of PNs. Advanced functional MR neurography sequences, such as diffusion tensor imaging tractography or T2 mapping, provide useful and robust quantitative parameters that can be useful in the assessment of PNs on a microscopic level. This article offers an overview of various technical parameters, pulse sequences, and protocols available in the imaging of PNs and provides tips on avoiding potential pitfalls.
Publication History
Article published online:
24 May 2022
© 2022. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Holzgrefe RE, Wagner ER, Singer AD, Daly CA. Imaging of the peripheral nerve: concepts and future direction of magnetic resonance neurography and ultrasound. J Hand Surg Am 2019; 44 (12) 1066-1079
- 2 Marquez Neto OR, Leite MS, Freitas T, Mendelovitz P, Villela EA, Kessler IM. The role of magnetic resonance imaging in the evaluation of peripheral nerves following traumatic lesion: where do we stand?. Acta Neurochir (Wien) 2017; 159 (02) 281-290
- 3 Ohana M, Moser T, Moussaouï A. et al. Current and future imaging of the peripheral nervous system. Diagn Interv Imaging 2014; 95 (01) 17-26
- 4 Chhabra A, Subhawong TK, Bizzell C, Flammang A, Soldatos T. 3T MR neurography using three-dimensional diffusion-weighted PSIF: technical issues and advantages. Skeletal Radiol 2011; 40 (10) 1355-1360
- 5 Van der Cruyssen F, Croonenborghs TM, Hermans R, Jacobs R, Casselman J. 3D cranial nerve imaging, a novel MR neurography technique using black-blood STIR TSE with a pseudo steady-state sweep and motion-sensitized driven equilibrium pulse for the visualization of the extraforaminal cranial nerve branches. AJNR Am J Neuroradiol 2021; 42 (03) 578-580
- 6 Chhabra A, Madhuranthakam AJ, Andreisek G. Magnetic resonance neurography: current perspectives and literature review. Eur Radiol 2018; 28 (02) 698-707
- 7 Chhabra A, Andreisek G, Batra K. Magnetic resonance neurography interpretation. In: Chhabra A, Andreisek G. eds. Magnetic Resonance Neurography. New Delhi, India: JayPee Brothers Medical Publishers; 2012: 23-36
- 8 Chhabra A, Flammang A, Padua Jr A, Carrino JA, Andreisek G. Magnetic resonance neurography: technical considerations. Neuroimaging Clin N Am 2014; 24 (01) 67-78
- 9 Cejas C, Escobar I, Serra M, Barroso F. High resolution neurography of the lumbosacral plexus on 3T magnetic resonance imaging [in English, Spanish]. Radiologia 2015; 57 (01) 22-34
- 10 Chhabra A, Andreisek G, Soldatos T. et al. MR neurography: past, present, and future. AJR Am J Roentgenol 2011; 197 (03) 583-591
- 11 Kim S, Choi J-Y, Huh Y-M. et al. Role of magnetic resonance imaging in entrapment and compressive neuropathy—what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: part 2. Upper extremity. Eur Radiol 2007; 17 (02) 509-522
- 12 Kwee RM, Chhabra A, Wang KC, Marker DR, Carrino JA. Accuracy of MRI in diagnosing peripheral nerve disease: a systematic review of the literature. AJR Am J Roentgenol 2014; 203 (06) 1303-1309
- 13 Chen WC, Tsai YH, Weng HH. et al. Value of enhancement technique in 3D-T2-STIR images of the brachial plexus. J Comput Assist Tomogr 2014; 38 (03) 335-339
- 14 Wendl CM, Eiglsperger J, Dendl L-M. et al. Fat suppression in magnetic resonance imaging of the head and neck region: is the two-point DIXON technique superior to spectral fat suppression?. Br J Radiol 2018; 91 (1085): 20170078
- 15 Ye JC. Compressed sensing MRI: a review from signal processing perspective. BMC Biomed Eng 2019; 1: 8
- 16 Kasper JM, Wadhwa V, Scott KM, Rozen S, Xi Y, Chhabra A. SHINKEI—a novel 3D isotropic MR neurography technique: technical advantages over 3DIRTSE-based imaging. Eur Radiol 2015; 25 (06) 1672-1677
- 17 Hill BJ, Padgett KR, Kalra V. et al. Gadolinium DTPA enhancement characteristics of the rat sciatic nerve after crush injury at 4.7T. AJNR Am J Neuroradiol 2018; 39 (01) 177-183
- 18 Lavini C, Buiter MS, Maas M. Use of dynamic contrast enhanced time intensity curve shape analysis in MRI: theory and practice. Reports Med Imaging. 2013; 6 (01) 71-82
- 19 Van der Cruyssen F, Croonenborghs TM, Renton T. et al. Magnetic resonance neurography of the head and neck: state of the art, anatomy, pathology and future perspectives. Br J Radiol 2021; 94 (1119): 20200798
- 20 Zare M, Faeghi F, Hosseini A, Ardekani MS, Heidari MH, Zarei E. Comparison between three-dimensional diffusion-weighted PSIF technique and routine imaging sequences in evaluation of peripheral nerves in healthy people. Basic Clin Neurosci 2018; 9 (01) 65-71
- 21 Chu J, Zhou Z, Hong G. et al. High-resolution MRI of the intraparotid facial nerve based on a microsurface coil and a 3D reversed fast imaging with steady-state precession DWI sequence at 3T. AJNR Am J Neuroradiol 2013; 34 (08) 1643-1648
- 22 Chhabra A, Soldatos T, Subhawong TK. et al. The application of three-dimensional diffusion-weighted PSIF technique in peripheral nerve imaging of the distal extremities. J Magn Reson Imaging 2011; 34 (04) 962-967
- 23 Martín Noguerol T, Barousse R. Update in the evaluation of peripheral nerves by MRI, from morphological to functional neurography [in English, Spanish]. Radiologia (Engl Ed) 2020; 62 (02) 90-101
- 24 Takahara T, Hendrikse J, Yamashita T. et al. Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiology 2008; 249 (02) 653-660
- 25 Foesleitner O, Sulaj A, Sturm V. et al. Diffusion MRI in peripheral nerves: optimized b values and the role of non-gaussian diffusion. Radiology 2022; 302 (01) 153-161
- 26 de Figueiredo E, Borgonovi AF, Doring TM. Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging. Magn Reson Imaging Clin N Am 2011; 19 (01) 1-22
- 27 Hiltunen J, Suortti T, Arvela S, Seppä M, Joensuu R, Hari R. Diffusion tensor imaging and tractography of distal peripheral nerves at 3 T. Clin Neurophysiol 2005; 116 (10) 2315-2323
- 28 Simon NG, Lagopoulos J, Gallagher T, Kliot M, Kiernan MC. Peripheral nerve diffusion tensor imaging is reliable and reproducible. J Magn Reson Imaging 2016; 43 (04) 962-969
- 29 Jeon T, Fung MM, Koch KM, Tan ET, Sneag DB. Peripheral nerve diffusion tensor imaging: overview, pitfalls, and future directions. J Magn Reson Imaging 2018; 47 (05) 1171-1189
- 30 Guggenberger R, Nanz D, Bussmann L. et al. Diffusion tensor imaging of the median nerve at 3.0 T using different MR scanners: agreement of FA and ADC measurements. Eur J Radiol 2013; 82 (10) e590-e596
- 31 Wheeler-Kingshott CAM, Cercignani M. About “axial” and “radial” diffusivities. Magn Reson Med 2009; 61 (05) 1255-1260
- 32 Heckel A, Weiler M, Xia A. et al. Peripheral nerve diffusion tensor imaging: assessment of axon and myelin sheath integrity. PLoS One 2015; 10 (06) e0130833
- 33 Gallagher TA, Simon NG, Kliot M. Diffusion tensor imaging to visualize axons in the setting of nerve injury and recovery. Neurosurg Focus 2015; 39 (03) E10
- 34 Pridmore MD, Glassman GE, Pollins AC. et al. Initial findings in traumatic peripheral nerve injury and repair with diffusion tensor imaging. Ann Clin Transl Neurol 2021; 8 (02) 332-347
- 35 Holmes SA, Karapanagou A, Staffa SJ. et al. DTI and MTR measures of nerve fiber integrity in pediatric patients with ankle injury. Front Pediatr 2021; 9 (September): 656843
- 36 Wang C-K, Jou I-M, Huang H-W. et al. Carpal tunnel syndrome assessed with diffusion tensor imaging: comparison with electrophysiological studies of patients and healthy volunteers. Eur J Radiol 2012; 81 (11) 3378-3383
- 37 Chhabra A, Thakkar RS, Andreisek G. et al. Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumors and tumorlike conditions. AJNR Am J Neuroradiol 2013; 34 (04) 802-807
- 38 Bruno F, Arrigoni F, Mariani S. et al. Application of diffusion tensor imaging (DTI) and MR-tractography in the evaluation of peripheral nerve tumours: state of the art and review of the literature. Acta Biomed 2019; 90 (5-S): 68-76
- 39 Liu C, Li HW, Wang L. et al. Optimal parameters and location for diffusion tensor imaging in the diagnosis of carpal tunnel syndrome: a meta-analysis. Clin Radiol 2018; 73 (12) 1058.e11-1058.e19
- 40 Acer N, Turgut M. Evaluation of brachial plexus using combined stereological techniques of diffusion tensor imaging and fiber tracking. J Brachial Plex Peripher Nerve Inj 2019; 14 (01) e16-e23
- 41 Triadyaksa P, Oudkerk M, Sijens PE. Cardiac T2 * mapping: techniques and clinical applications. J Magn Reson Imaging 2020; 52 (05) 1340-1351
- 42 Hesper T, Neugroda C, Schleich C. et al. T2*-mapping of acetabular cartilage in patients with femoroacetabular impingement at 3 Tesla: comparative analysis with arthroscopic findings. Cartilage 2018; 9 (02) 118-126
- 43 Hiwatashi A, Togao O, Yamashita K. et al. Simultaneous MR neurography and apparent T2 mapping in brachial plexus: evaluation of patients with chronic inflammatory demyelinating polyradiculoneuropathy. Magn Reson Imaging 2019; 55: 112-117
- 44 Eguchi Y, Enomoto K, Sato T. et al. Simultaneous MR neurography and apparent T2 mapping of cervical nerve roots before microendoscopic surgery to treat patient with radiculopathy due to cervical disc herniation: preliminary results. J Clin Neurosci 2020; 74: 213-219
- 45 Sollmann N, Weidlich D, Cervantes B. et al. T2 mapping of lumbosacral nerves in patients suffering from unilateral radicular pain due to degenerative disc disease. J Neurosurg Spine 2019; (Feb 22): 1-9
- 46 Sollmann N, Weidlich D, Klupp E. et al. T2 mapping of the distal sciatic nerve in healthy subjects and patients suffering from lumbar disc herniation with nerve compression. MAGMA 2020; 33 (05) 713-724
- 47 Preisner F, Behnisch R, Foesleitner O. et al. Reliability and reproducibility of sciatic nerve magnetization transfer imaging and T2 relaxometry. Eur Radiol 2021; 31 (12) 9120-9130
- 48 Chappell KE, Robson MD, Stonebridge-Foster A. et al. Magic angle effects in MR neurography. AJNR Am J Neuroradiol 2004; 25 (03) 431-440
- 49 Kästel T, Heiland S, Bäumer P, Bartsch AJ, Bendszus M, Pham M. Magic angle effect: a relevant artifact in MR neurography at 3T?. AJNR Am J Neuroradiol 2011; 32 (05) 821-827
- 50 Sakai T, Aoki Y, Watanabe A, Yoneyama M, Ochi S, Miyati T. Functional assessment of lumbar nerve roots using coronal-plane single-shot turbo spin-echo diffusion tensor imaging. Magn Reson Med Sci 2020; 19 (02) 159-165
- 51 Martín-Noguerol T, Montesinos P, Barousse R, Luna A. RadioGraphics update: Functional MR neurography in evaluation of peripheral nerve trauma and postsurgical assessment. Radiographics 2021; 41 (02) E40-E44
- 52 De Paepe KN, Higgins DM, Ball I, Morgan VA, Barton DP, deSouza NM. Visualizing the autonomic and somatic innervation of the female pelvis with 3D MR neurography: a feasibility study. Acta Radiol 2020; 61 (12) 1668-1676
- 53 Muniz Neto FJ, Kihara Filho EN, Miranda FC, Rosemberg LA, Santos DCB, Taneja AK. Demystifying MR neurography of the lumbosacral plexus: from protocols to pathologies. BioMed Res Int 2018; 2018: 9608947