CC BY 4.0 · Glob Med Genet 2022; 09(02): 072-075
DOI: 10.1055/s-0042-1743573
Review Article

Comparison of Bioinformatics Approaches for Fetal Microdeletions and Monogenic Variations Estimation in Non-invasive Prenatal Testing

Lizzy Teleboshe Paul
1   Department of Medical Biology, Faculty of Medicine, Near East University, Nicosia, Cyprus
,
2   Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
3   DESAM Research Institute, Near East University, Nicosia, Cyprus
› Institutsangaben
Funding None.

Abstract

Prenatal testing provides crucial information about the health status of fetuses as well as recommending better treatment. For the past decades, prenatal testing using chorionic villus sampling and amniocentesis were the two majorly used forms of invasive prenatal diagnostic approaches. However, to facilitate prenatal testing without causing any danger to the fetus, the noninvasive prenatal diagnostic method, which uses circulating cell-free deoxyribonucleic acid (DNA), has become a suitable method of prenatal diagnosis. This review discusses the recent bioinformatics approaches used for analyzing fetal DNA concentration.



Publikationsverlauf

Eingereicht: 16. November 2021

Angenommen: 29. Dezember 2021

Artikel online veröffentlicht:
25. Februar 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Cheng WL, Hsiao CH, Tseng HW, Lee TP. Noninvasive prenatal diagnosis. Taiwan J Obstet Gynecol 2015; 54 (04) 343-349
  • 2 Peleg D. Procedural risks versus theology: chorionic villus sampling for Orthodox Jews at less than 8 weeks' gestation. Am J Obstet Gynecol 2003; 188 (01) 299-300 , author reply 300–301
  • 3 Tabor A, Philip J, Madsen M, Bang J, Obel EB, Nørgaard-Pedersen B. Randomised controlled trial of genetic amniocentesis in 4606 low-risk women. Lancet 1986; 1 (8493): 1287-1293
  • 4 Wilson RD, Langlois S, Johnson JA. SOGC GENETICS COMMITTEE, CCMG PRENATAL DIAGNOSIS COMMITTEE. Mid-trimester amniocentesis fetal loss rate. J Obstet Gynaecol Can 2007; 29 (07) 586-590
  • 5 Lo YM. Noninvasive prenatal detection of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis: a review of the current state of the art. BJOG 2009; 116 (02) 152-157
  • 6 Lui YY, Chik KW, Chiu RW, Ho CY, Lam CW, Lo YM. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem 2002; 48 (03) 421-427
  • 7 Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 2001; 313 (1-2): 139-142
  • 8 Lo YM, Corbetta N, Chamberlain PF. et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997; 350 (9076): 485-487
  • 9 Peng XL, Jiang P. Bioinformatics Approaches for Fetal DNA Fraction Estimation in noninvasive prenatal testing. Int J Mol Sci 2017; 18 (02) 453
  • 10 Yoo SK, Lim BC, Byeun J. et al. Noninvasive prenatal diagnosis of Duchenne muscular dystrophy: comprehensive genetic diagnosis in carrier, proband, and fetus. Clin Chem 2015; 61 (06) 829-837
  • 11 Lun FM, Chiu RW, Chan KC, Leung TY, Lau TK, Lo YM. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem 2008; 54 (10) 1664-1672
  • 12 Chiu RW, Akolekar R, Zheng YW. et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ 2011; 342: c7401
  • 13 Sparks AB, Struble CA, Wang ET, Song K, Oliphant A. Noninvasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18. Am J Obstet Gynecol 2012; 206 (04) 319.e1-319.e9
  • 14 Bellis MA, Hughes K, Hughes S, Ashton JR. Measuring paternal discrepancy and its public health consequences. J Epidemiol Community Health 2005; 59 (09) 749-754
  • 15 Jiang P, Chan KC, Liao GJ. et al. FetalQuant: deducing fractional fetal DNA concentration from massively parallel sequencing of DNA in maternal plasma. Bioinformatics 2012; 28 (22) 2883-2890
  • 16 Jiang P, Peng X, Su X. et al. FetalQuantSD: accurate quantification of fetal DNA fraction by shallow-depth sequencing of maternal plasma DNA. NPJ Genom Med 2016; 1: 16013
  • 17 Kim SK, Hannum G, Geis J. et al. Determination of fetal DNA fraction from the plasma of pregnant women using sequence read counts. Prenat Diagn 2015; 35 (08) 810-815
  • 18 Chan KC, Zhang J, Hui AB. et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem 2004; 50 (01) 88-92
  • 19 Yu SC, Chan KC, Zheng YW. et al. Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing. Proc Natl Acad Sci USA 2014; 111 (23) 8583-8588
  • 20 Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16 (01) 6-21
  • 21 Nygren AO, Dean J, Jensen TJ. et al. Quantification of fetal DNA by use of methylation-based DNA discrimination. Clin Chem 2010; 56 (10) 1627-1635
  • 22 Sun K, Jiang P, Chan KC. et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A 2015; 112 (40) E5503-E5512
  • 23 Lun FM, Chiu RW, Sun K. et al. Noninvasive prenatal methylomic analysis by genomewide bisulfite sequencing of maternal plasma DNA. Clin Chem 2013; 59 (11) 1583-1594
  • 24 Straver R, Oudejans CB, Sistermans EA, Reinders MJ. Calculating the fetal fraction for noninvasive prenatal testing based on genome-wide nucleosome profiles. Prenat Diagn 2016; 36 (07) 614-621