CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2022; 57(05): 709-717
DOI: 10.1055/s-0042-1744496
Revisão Sistemática e Metanálise
Mão

Is There Room for Microsurgery in Robotic Surgery?[*]

Article in several languages: português | English
1   Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
2   Departamento de Cirurgia da Mão e Microcirurgia Reconstrutiva, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
,
1   Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
,
1   Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
,
1   Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
,
3   Departamento de Cirurgia da Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
› Author Affiliations
Funding The present study did not receive any financial support from public, commercial, or non-profit sources.

Abstract

Robotic surgery opened a new era of minimally-invasive procedures, through its improved precision, elimination of tremors, greater degrees of freedom, and other facilitating aspects. The field of robotic microsurgery showed great growth in recent years in particular, since robotics offers a potentially-ideal configuration to perform the sensitive manipulations required in microsurgery. We conducted a systematic review to assess the benefits of robotic surgery and its contributions to microsurgery, comparing it with other surgical techniques used in patients of all age groups. We assessed 25 articles found in the PubMed and Cochrane databases using the terms 'robotic surgery' AND microsurgery, with a filter for studies published in the last five years, and studies conducted in humans and published in English or Portuguese. We concluded that there is plenty of room for robotic surgery in microsurgery, such as in male infertility procedures, neurological microsurgery, ocular and otological surgeries, and transoral, hepatobiliary, microvascular, plastic and reconstructive surgeries.

* Study conducted at the School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.




Publication History

Received: 14 February 2021

Accepted: 07 February 2022

Article published online:
16 May 2022

© 2022. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Marino MV, Shabat G, Gulotta G, Komorowski AL. From illusion to reality: a brief history of robotic surgery. Surg Innov 2018; 25 (03) 291-296
  • 2 Saleh DB, Syed M, Kulendren D, Ramakrishnan V, Liverneaux PA. Plastic and reconstructive robotic microsurgery–a review of current practices. Ann Chir Plast Esthet 2015; 60 (04) 305-312
  • 3 Ibrahim AE, Sarhane KA, Selber JC. New Frontiers in Robotic-Assisted Microsurgical Reconstruction. Clin Plast Surg 2017; 44 (02) 415-423
  • 4 Da Vinci Surgical System. 2005 Available from: http://www.intuitivesurgical.com/products/davinci_surgicalsystem/index.aspx
  • 5 Struk S, Qassemyar Q, Leymarie N. et al. The ongoing emergence of robotics in plastic and reconstructive surgery. Ann Chir Plast Esthet 2018; 63 (02) 105-112
  • 6 Guillonneau B. What robotics in urology? A current point of view. Eur Urol 2003; 43 (02) 103-105
  • 7 Lee N. Robotic surgery: where are we now?. Lancet 2014; 384 (9952): 1417
  • 8 Selber JC. Transoral robotic reconstruction of oropharyngeal defects: a case series. Plast Reconstr Surg 2010; 126 (06) 1978-1987
  • 9 Longfield EA, Holsinger FC, Selber JC. Reconstruction after robotic head and neck surgery: when and why. J Reconstr Microsurg 2012; 28 (07) 445-450
  • 10 Toesca A, Peradze N, Galimberti V. et al. Robotic Nipple-sparing Mastectomy and Immediate Breast Reconstruction With Implant: First Report of Surgical Technique. Ann Surg 2017; 266 (02) e28-e30
  • 11 Toesca A, Peradze N, Manconi A. et al. Robotic nipple-sparing mastectomy for the treatment of breast cancer: Feasibility and safety study. Breast 2017; 31: 51-56
  • 12 Pedersen J, Song DH, Selber JC. Robotic, intraperitoneal harvest of the rectus abdominis muscle. Plast Reconstr Surg 2014; 134 (05) 1057-1063
  • 13 Clemens MW, Kronowitz S, Selber JC. Robotic-assisted latissimus dorsi harvest in delayed-immediate breast reconstruction. Semin Plast Surg 2014; 28 (01) 20-25
  • 14 Selber JC, Baumann DP, Holsinger CF. Robotic harvest of the latissimus dorsi muscle: laboratory and clinical experience. J Reconstr Microsurg 2012; 28 (07) 457-464
  • 15 Selber JC. Can I make robotic surgery make sense in mypractice?. Plast Reconstr Surg 2017; 139 (03) 781e-792e
  • 16 van Mulken TJM, Boymans CAEM, Schols RM. et al. Preclinical Experience Using a New Robotic System Created for Microsurgery. Plast Reconstr Surg 2018; 142 (05) 1367-1376
  • 17 van Mulken TJM, Schols RM, Qiu SS. et al. Robotic (super) microsurgery: Feasibility of a new master-slave platform in an in vivo animal model and future directions. J Surg Oncol 2018; 118 (05) 826-831
  • 18 Wang P, Su YJ, Jia CY. Current surgical practices of robotic-assisted tissue repair and reconstruction. Chin J Traumatol 2019; 22 (02) 88-92
  • 19 Ind TE, Marshall C, Hacking M. et al. Introducing robotic surgery into an endometrial cancer service–a prospective evaluation of clinical and economic outcomes in a UK institution. Int J Med Robot 2016; 12 (01) 137-144
  • 20 Rudmik L, An W, Livingstone D. et al. Making a case for high-volume robotic surgery centers: A cost-effectiveness analysis of transoral robotic surgery. J Surg Oncol 2015; 112 (02) 155-163
  • 21 Goto T, Hongo K, Ogiwara T. et al. Intelligent Surgeon's Arm Supporting System iArmS in Microscopic Neurosurgery Utilizing Robotic Technology. World Neurosurg 2018; 119: e661-e665
  • 22 Smith JA, Jivraj J, Wong R, Yang V. 30 Years of Neurosurgical Robots: Review and Trends for Manipulators and Associated Navigational Systems. Ann Biomed Eng 2016; 44 (04) 836-846
  • 23 Roizenblatt M, Grupenmacher AT, Belfort Junior R, Maia M, Gehlbach PL. Robot-assisted tremor control for performance enhancement of retinal microsurgeons. Br J Ophthalmol 2019; 103 (08) 1195-1200
  • 24 Kavoussi PK. Validation of robot-assisted vasectomy reversal. Asian J Androl 2015; 17 (02) 245-247
  • 25 Darves-Bornoz A, Panken E, Brannigan RE, Halpern JA. Robotic Surgery for Male Infertility. Urol Clin North Am 2021; 48 (01) 127-135
  • 26 Edwards TL, Xue K, Meenink HCM. et al. First-in-human study of the safety and viability of intraocular robotic surgery. Nat Biomed Eng 2018; 2: 649-656
  • 27 Bourcier T, Chammas J, Becmeur PH. et al. Robotically Assisted Pterygium Surgery: First Human Case. Cornea 2015; 34 (10) 1329-1330
  • 28 Gonzalez-Ciccarelli LF, Quadri P, Daskalaki D, Milone L, Gangemi A, Giulianotti PC. Robotic approach to hepatobiliary surgery. Chirurg 2017; 88 (Suppl. 01) 19-28
  • 29 Gundlapalli VS, Ogunleye AA, Scott K. et al. Robotic-assisted deep inferior epigastric artery perforator flap abdominal harvest for breast reconstruction: A case report. Microsurgery 2018; 38 (06) 702-705
  • 30 Fiorelli A, Mazzone S, Costa G, Santini M. Endoscopic treatment of idiopathic subglottic stenosis with digital AcuBlade robotic microsurgery system. Clin Respir J 2018; 12 (02) 802-805
  • 31 Fu TS, Foreman A, Goldstein DP, de Almeida JR. The role of transoral robotic surgery, transoral laser microsurgery, and lingual tonsillectomy in the identification of head and neck squamous cell carcinoma of unknown primary origin: a systematic review. J Otolaryngol Head Neck Surg 2016; 45 (01) 28
  • 32 Kwong FN, Puvanendran M, Paleri V. Transoral robotic surgery in head neck cancer management. B-ENT 2015; (Suppl. 24) 7-13
  • 33 Lörincz BB, Jowett N, Knecht R. Decision management in transoral robotic surgery: Indications, individual patient selection, and role in the multidisciplinary treatment for head and neck cancer from a European perspective. Head Neck 2016; 38 (Suppl. 01) E2190-E2196
  • 34 Castellano A, Sharma A. Systematic Review of Validated Quality of Life and Swallow Outcomes after Transoral Robotic Surgery. Otolaryngol Head Neck Surg 2019; 161 (04) 561-567
  • 35 Chalmers R, Schlabe J, Yeung E, Kerawala C, Cascarini L, Paleri V. Robot-Assisted Reconstruction in Head and Neck Surgical Oncology: The Evolving Role of the Reconstructive Microsurgeon. ORL J Otorhinolaryngol Relat Spec 2018; 80 (3-4): 178-185
  • 36 Li H, Torabi SJ, Park HS. et al. Clinical value of transoral robotic surgery: Nationwide results from the first 5 years of adoption. Laryngoscope 2019; 129 (08) 1844-1855
  • 37 Hanna J, Brauer PR, Morse E, Judson B, Mehra S. Is robotic surgery an option for early T-stage laryngeal cancer? Early nationwide results. Laryngoscope 2020; 130 (05) 1195-1201
  • 38 Akst LM, Olds KC, Balicki M, Chalasani P, Taylor RH. Robotic microlaryngeal phonosurgery: Testing of a “steady-hand” microsurgery platform. Laryngoscope 2018; 128 (01) 126-132
  • 39 McGuire DA, Rodney JP, Vasan NR. Improved Glottic Exposure for Robotic Microlaryngeal Surgery: A Case Series. J Voice 2017; 31 (05) 628-633
  • 40 Kim JY, Kim WS, Choi EC, Nam W. The Role of Virtual Surgical Planning in the Era of Robotic Surgery. Yonsei Med J 2016; 57 (01) 265-268
  • 41 Dahroug B, Tamadazte B, Weber S, Tavernier L, Andreff N. Review on Otological Robotic Systems: Toward Microrobot-Assisted Cholesteatoma Surgery. IEEE Rev Biomed Eng 2018; 11: 125-142
  • 42 van Mulken TJM, Schols RM, Scharmga AMJ. et al; MicroSurgical Robot Research Group. First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: a randomized pilot trial. Nat Commun 2020; 11 (01) 757
  • 43 Doulgeris JJ, Gonzalez-Blohm SA, Filis AK, Shea TM, Aghayev K, Vrionis FD. Robotics in Neurosurgery: Evolution, Current Challenges, and Compromises. Cancer Contr 2015; 22 (03) 352-359
  • 44 Chang DW. Lymphaticovenular bypass for lymphedema management in breast cancer patients: a prospective study. Plast Reconstr Surg 2010; 126 (03) 752-758
  • 45 McBeth PB, Louw DF, Rizun PR, Sutherland GR. Robotics in neurosurgery. Am J Surg 2004; 188 (4A, Suppl) 68S-75S