CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2023; 58(01): 173-178
DOI: 10.1055/s-0042-1748964
Nota Técnica
Joelho

Monoaxial Mechanical Tests on Porcino Knee Ligaments[*]

Article in several languages: português | English
1   Divisão de Ensino e Pesquisa (DIENP), Instituto Nacional de Traumatologia e Ortopedia, Rio de Janeiro, RJ, Brasil
2   Programa de Pós-graduação em Engenharia Mecânica e Tecnologia de Materiais – PPEMM – CEFET/RJ, Rio de Janeiro, RJ, Brasil
,
1   Divisão de Ensino e Pesquisa (DIENP), Instituto Nacional de Traumatologia e Ortopedia, Rio de Janeiro, RJ, Brasil
,
2   Programa de Pós-graduação em Engenharia Mecânica e Tecnologia de Materiais – PPEMM – CEFET/RJ, Rio de Janeiro, RJ, Brasil
,
2   Programa de Pós-graduação em Engenharia Mecânica e Tecnologia de Materiais – PPEMM – CEFET/RJ, Rio de Janeiro, RJ, Brasil
,
3   Universidade de Valença, Valença, RJ, Brasil
› Author Affiliations
Financial Support The present study did not receive any financial support from public, commercial, or not-for-profit sources.

Abstract

The failure of ligament reconstruction has different risk factors, among which we can highlight the period before its incorporation, which is a mechanically vulnerable period. Loss of resistance over time is a characteristic of living tissues. Dissection with bone insertions of the cruciate ligaments of animal models is not described; however, it is essential for monoaxial assays to extract information from tests such as relaxation. The present work describes the dissection used for the generation of a test body for the performance of nondestructive tests to evaluate the mechanical behavior. We performed dissection of four porcino knee ligaments, proposing a dissection technique for the cruciate ligaments with bone inserts for comparison with collateral ligaments. The ligaments were submitted to relaxation tests and had strain gauges placed during the tests. The results showed viscoelastic behavior, validated by strain gauges and with a loss over time; with some ligaments presenting with losses of up to 20%, a factor to be considered in future studies. The present work dissected the four main ligaments of the knee demonstrating the posterior approach that allows maintaining their bone insertions and described the fixation for the monotonic uniaxial trials, besides being able to extract the viscoelastic behavior of the four ligaments of the knee, within the physiological limits of the knee.

* Work developed in the Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro e Instituto Nacional de Traumatologia e Ortopedia (INTO), Rio de Janeiro, RJ, Brazil.




Publication History

Received: 20 November 2021

Accepted: 04 March 2022

Article published online:
06 June 2022

© 2022. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Ménétrey J, Duthon VB, Laumonier T, Fritschy D. “Biological failure” of the anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthrosc 2008; 16 (03) 224-231
  • 2 Ekdahl M, Wang JH, Ronga M, Fu FH. Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2008; 16 (10) 935-947
  • 3 Górios C, Hernandez AJ, Amatuzzi MM. et al. Estudo da rigidez do ligamento cruzado anterior do joelho e dos enxertos para sua reconstrução com o ligamento patelar e com os tendões dos músculos semitendíneo e grácil. Acta Ortop Bras 2001; 9 (02) 26-40
  • 4 Monaco E, Labianca L, Speranza A. et al. Biomechanical evaluation of different anterior cruciate ligament fixation techniques for hamstring graft. J Orthop Sci 2010; 15 (01) 125-131
  • 5 Adam F, Pape D, Schiel K, Steimer O, Kohn D, Rupp S. Biomechanical properties of patellar and hamstring graft tibial fixation techniques in anterior cruciate ligament reconstruction: experimental study with roentgen stereometric analysis. Am J Sports Med 2004; 32 (01) 71-78
  • 6 Duenwald SE, Vanderby Jr R, Lakes RS. Stress relaxation and recovery in tendon and ligament: experiment and modeling. Biorheology 2010; 47 (01) 1-14
  • 7 Skelley NW, Castile RM, Cannon PC, Weber CI, Brophy RH, Lake SP. Regional Variation in the Mechanical and Microstructural Properties of the Human Anterior Cruciate Ligament. Am J Sports Med 2016; 44 (11) 2892-2899
  • 8 Troyer KL, Shetye SS, Puttlitz CM. Experimental characterization and finite element implementation of soft tissue nonlinear viscoelasticity. J Biomech Eng 2012; 134 (11) 114501
  • 9 Gardiner JC, Weiss JA, Rosenberg TD. Strain in the human medial collateral ligament during valgus loading of the knee. Clin Orthop Relat Res 2001; (391) 266-274
  • 10 Completo A, Noronha JC, Oliveira C, Fonseca F. Análise biomecânica da reconstrução do ligamento cruzado anterior. Rev Bras Ortop 2019; 54 (02) 190-197