Semin Thromb Hemost 2023; 49(08): 848-860
DOI: 10.1055/s-0042-1749659
Review Article

Post-Pulmonary Embolism Syndrome and Functional Outcomes after Acute Pulmonary Embolism

Dieuwke Luijten
1   Department of Medicine, Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
,
Cindy M. M. de Jong
1   Department of Medicine, Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
,
Maarten K. Ninaber
2   Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
,
Martijn A. Spruit
3   Department of Research & Development, Ciro, Horn, The Netherlands
4   Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht, The Netherlands
,
Menno V. Huisman
1   Department of Medicine, Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
,
Frederikus A. Klok
1   Department of Medicine, Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
› Author Affiliations

Abstract

Survivors of acute pulmonary embolism (PE) are at risk of developing persistent, sometimes disabling symptoms of dyspnea and/or functional limitations despite adequate anticoagulant treatment, fulfilling the criteria of the post-PE syndrome (PPES). PPES includes chronic thromboembolic pulmonary hypertension (CTEPH), chronic thromboembolic pulmonary disease, post-PE cardiac impairment (characterized as persistent right ventricle impairment after PE), and post-PE functional impairment. To improve the overall health outcomes of patients with acute PE, adequate measures to diagnose PPES and strategies to prevent and treat PPES are essential. Patient-reported outcome measures are very helpful to identify patients with persistent symptoms and functional impairment. The primary concern is to identify and adequately treat patients with CTEPH as early as possible. After CTEPH is ruled out, additional diagnostic tests including cardiopulmonary exercise tests, echocardiography, and imaging of the pulmonary vasculature may be helpful to rule out non-PE–related comorbidities and confirm the ultimate diagnosis. Most PPES patients will show signs of physical deconditioning as main explanation for their clinical presentation. Therefore, cardiopulmonary rehabilitation provides a good potential treatment option for this patient category, which warrants testing in adequately designed and executed randomized trials. In this review, we describe the definition and characteristics of PPES and its diagnosis and management.



Publication History

Article published online:
12 July 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Barco S, Mahmoudpour SH, Valerio L. et al. Trends in mortality related to pulmonary embolism in the European Region, 2000-15: analysis of vital registration data from the WHO Mortality Database. Lancet Respir Med 2020; 8 (03) 277-287
  • 2 Barco S, Valerio L, Ageno W. et al. Age-sex specific pulmonary embolism-related mortality in the USA and Canada, 2000-18: an analysis of the WHO Mortality Database and of the CDC Multiple Cause of Death database. Lancet Respir Med 2021; 9 (01) 33-42
  • 3 Klok FA, Mos IC, Broek L. et al. Risk of arterial cardiovascular events in patients after pulmonary embolism. Blood 2009; 114 (08) 1484-1488
  • 4 Klok FA, Zondag W, van Kralingen KW. et al. Patient outcomes after acute pulmonary embolism. A pooled survival analysis of different adverse events. Am J Respir Crit Care Med 2010; 181 (05) 501-506
  • 5 Klok FA, Ageno W, Ay C. et al. Optimal follow-up after acute pulmonary embolism: a position paper of the European Society of Cardiology Working Group on Pulmonary Circulation and Right Ventricular Function, in collaboration with the European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology, endorsed by the European Respiratory Society. Eur Heart J 2022; 43 (03) 183-189
  • 6 Huisman MV, Barco S, Cannegieter SC. et al. Pulmonary embolism. Nat Rev Dis Primers 2018; 4: 18028
  • 7 Konstantinides SV, Meyer G, Becattini C. et al; The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J 2019; 54 (03) 1901647
  • 8 Kahn SR, Akaberi A, Granton JT. et al. Quality of life, dyspnea, and functional exercise capacity following a first episode of pulmonary embolism: results of the ELOPE cohort study. Am J Med 2017; 130 (08) 990.e9-990.e21
  • 9 Klok FA, Cohn DM, Middeldorp S. et al. Quality of life after pulmonary embolism: validation of the PEmb-QoL Questionnaire. J Thromb Haemost 2010; 8 (03) 523-532
  • 10 Klok FA, van Kralingen KW, van Dijk AP. et al. Quality of life in long-term survivors of acute pulmonary embolism. Chest 2010; 138 (06) 1432-1440
  • 11 Sista AK, Miller LE, Kahn SR, Kline JA. Persistent right ventricular dysfunction, functional capacity limitation, exercise intolerance, and quality of life impairment following pulmonary embolism: systematic review with meta-analysis. Vasc Med 2017; 22 (01) 37-43
  • 12 Tavoly M, Utne KK, Jelsness-Jørgensen LP. et al. Health-related quality of life after pulmonary embolism: a cross-sectional study. BMJ Open 2016; 6 (11) e013086
  • 13 Valerio L, Barco S, Jankowski M. et al. Quality of life 3 and 12 months following acute pulmonary embolism: analysis from a prospective multicenter cohort study. Chest 2021; 159 (06) 2428-2438
  • 14 Sista AK, Klok FA. Late outcomes of pulmonary embolism: the post-PE syndrome. Thromb Res 2018; 164: 157-162
  • 15 Klok FA, van Kralingen KW, van Dijk AP, Heyning FH, Vliegen HW, Huisman MV. Prevalence and potential determinants of exertional dyspnea after acute pulmonary embolism. Respir Med 2010; 104 (11) 1744-1749
  • 16 Stevinson BG, Hernandez-Nino J, Rose G, Kline JA. Echocardiographic and functional cardiopulmonary problems 6 months after first-time pulmonary embolism in previously healthy patients. Eur Heart J 2007; 28 (20) 2517-2524
  • 17 Kline JA, Steuerwald MT, Marchick MR, Hernandez-Nino J, Rose GA. Prospective evaluation of right ventricular function and functional status 6 months after acute submassive pulmonary embolism: frequency of persistent or subsequent elevation in estimated pulmonary artery pressure. Chest 2009; 136 (05) 1202-1210
  • 18 Klok FA, van der Hulle T, den Exter PL, Lankeit M, Huisman MV, Konstantinides S. The post-PE syndrome: a new concept for chronic complications of pulmonary embolism. Blood Rev 2014; 28 (06) 221-226
  • 19 Klok FA, Barco S. Follow-up after acute pulmonary embolism. Hamostaseologie 2018; 38 (01) 22-32
  • 20 Boon GJAM, Huisman MV, Klok FA. Determinants and management of the post-pulmonary embolism syndrome. Semin Respir Crit Care Med 2021; 42 (02) 299-307
  • 21 Le Gal G, Carrier M, Castellucci LA. et al; ISTH CDE Task Force. Development and implementation of common data elements for venous thromboembolism research: on behalf of SSC Subcommittee on official Communication from the SSC of the ISTH. J Thromb Haemost 2021; 19 (01) 297-303
  • 22 Simonneau G, Torbicki A, Dorfmüller P, Kim N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur Respir Rev 2017; 26 (143) 160112
  • 23 Delcroix M, Torbicki A, Gopalan D. et al. ERS statement on chronic thromboembolic pulmonary hypertension. Eur Respir J 2021; 57 (06) 2002828
  • 24 Lang IM, Dorfmüller P, Vonk Noordegraaf A. The pathobiology of chronic thromboembolic pulmonary hypertension. Ann Am Thorac Soc 2016; 13 (Suppl. 03) S215-S221
  • 25 Quarck R, Wynants M, Verbeken E, Meyns B, Delcroix M. Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension. Eur Respir J 2015; 46 (02) 431-443
  • 26 Sharma S, Hofbauer TM, Ondracek AS. et al. Neutrophil extracellular traps promote fibrous vascular occlusions in chronic thrombosis. Blood 2021; 137 (08) 1104-1116
  • 27 Mathai SC, Ghofrani HA, Mayer E, Pepke-Zaba J, Nikkho S, Simonneau G. Quality of life in patients with chronic thromboembolic pulmonary hypertension. Eur Respir J 2016; 48 (02) 526-537
  • 28 Roman A, Barbera JA, Castillo MJ, Muñoz R, Escribano P. Health-related quality of life in a national cohort of patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. Arch Bronconeumol 2013; 49 (05) 181-188
  • 29 Delcroix M, Lang I, Pepke-Zaba J. et al. Long-term outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. Circulation 2016; 133 (09) 859-871
  • 30 Galiè N, Humbert M, Vachiery J-L. et al; ESC Scientific Document Group. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016; 37 (01) 67-119
  • 31 Simonneau G, Montani D, Celermajer DS. et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53 (01) 1801913
  • 32 Held M, Kolb P, Grün M. et al. Functional characterization of patients with chronic thromboembolic disease. Respiration 2016; 91 (06) 503-509
  • 33 Claeys M, Claessen G, La Gerche A. et al. Impaired cardiac reserve and abnormal vascular load limit exercise capacity in chronic thromboembolic disease. JACC Cardiovasc Imaging 2019; 12 (8 Pt 1): 1444-1456
  • 34 van Kan C, van der Plas MN, Reesink HJ. et al. Hemodynamic and ventilatory responses during exercise in chronic thromboembolic disease. J Thorac Cardiovasc Surg 2016; 152 (03) 763-771
  • 35 Taboada D, Pepke-Zaba J, Jenkins DP. et al. Outcome of pulmonary endarterectomy in symptomatic chronic thromboembolic disease. Eur Respir J 2014; 44 (06) 1635-1645
  • 36 Coghlan JG. Balloon pulmonary angioplasty: does it have a role in CTED?. Pulm Circ 2018; 8 (01) 2045893218754887
  • 37 Ribeiro A, Lindmarker P, Johnsson H, Juhlin-Dannfelt A, Jorfeldt L. Pulmonary embolism: one-year follow-up with echocardiography doppler and five-year survival analysis. Circulation 1999; 99 (10) 1325-1330
  • 38 Kurnicka K, Lichodziejewska B, Goliszek S. et al. Echocardiographic pattern of acute pulmonary embolism: analysis of 511 consecutive patients. J Am Soc Echocardiogr 2016; 29 (09) 907-913
  • 39 Golpe R, Testa-Fernández A, Pérez-de-Llano LA. et al. Long-term clinical outcome of patients with persistent right ventricle dysfunction or pulmonary hypertension after acute pulmonary embolism. Eur J Echocardiogr 2011; 12 (10) 756-761
  • 40 Watts JA, Zagorski J, Gellar MA, Stevinson BG, Kline JA. Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats. J Mol Cell Cardiol 2006; 41 (02) 296-307
  • 41 Iwadate K, Doi M, Tanno K. et al. Right ventricular damage due to pulmonary embolism: examination of the number of infiltrating macrophages. Forensic Sci Int 2003; 134 (2–3): 147-153
  • 42 Gleditsch J, Jervan Ø, Tavoly M. et al. Association between myocardial fibrosis, as assessed with cardiac magnetic resonance T1 mapping, and persistent dyspnea after pulmonary embolism. Int J Cardiol Heart Vasc 2021; 38: 100935
  • 43 Kahn SR, Hirsch AM, Akaberi A. et al. Functional and exercise limitations after a first episode of pulmonary embolism: results of the ELOPE prospective cohort study. Chest 2017; 151 (05) 1058-1068
  • 44 Albaghdadi MS, Dudzinski DM, Giordano N. et al. Cardiopulmonary exercise testing in patients following massive and submassive pulmonary embolism. J Am Heart Assoc 2018; 7 (05) e006841
  • 45 Hunter R, Noble S, Lewis S, Bennett P. Long-term psychosocial impact of venous thromboembolism: a qualitative study in the community. BMJ Open 2019; 9 (02) e024805
  • 46 Kirchberger I, Ruile S, Linseisen J, Haberl S, Meisinger C, Berghaus TM. The lived experience with pulmonary embolism: a qualitative study using focus groups. Respir Med 2020; 167: 105978
  • 47 Danielsbacka JS, Rostberg L, Olsén MF, Mannerkorpi K. “Whole life changed” - Experiences of how symptoms derived from acute pulmonary embolism affects life. A qualitative interview study. Thromb Res 2021; 205: 56-62
  • 48 Keller K, Tesche C, Gerhold-Ay A. et al. Quality of life and functional limitations after pulmonary embolism and its prognostic relevance. J Thromb Haemost 2019; 17 (11) 1923-1934
  • 49 Braekkan SK, Grosse SD, Okoroh EM. et al. Venous thromboembolism and subsequent permanent work-related disability. J Thromb Haemost 2016; 14 (10) 1978-1987
  • 50 Willich SN, Chuang LH, van Hout B. et al. Pulmonary embolism in Europe - Burden of illness in relationship to healthcare resource utilization and return to work. Thromb Res 2018; 170: 181-191
  • 51 Jørgensen H, Horváth-Puhó E, Laugesen K, Brækkan S, Hansen JB, Sørensen HT. Risk of a permanent work-related disability pension after incident venous thromboembolism in Denmark: a population-based cohort study. PLoS Med 2021; 18 (08) e1003770
  • 52 Guérin L, Couturaud F, Parent F. et al. Prevalence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Prevalence of CTEPH after pulmonary embolism. Thromb Haemost 2014; 112 (03) 598-605
  • 53 Choi SW, Victorson DE, Yount S, Anton S, Cella D. Development of a conceptual framework and calibrated item banks to measure patient-reported dyspnea severity and related functional limitations. Value Health 2011; 14 (02) 291-306
  • 54 Crisafulli E, Clini EM. Measures of dyspnea in pulmonary rehabilitation. Multidiscip Respir Med 2010; 5 (03) 202-210
  • 55 Mador MJ, Rodis A, Magalang UJ. Reproducibility of Borg scale measurements of dyspnea during exercise in patients with COPD. Chest 1995; 107 (06) 1590-1597
  • 56 McGoon M, Gutterman D, Steen V. et al; American College of Chest Physicians. Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 2004; 126 (1, Suppl): 14S-34S
  • 57 Cohn DM, Nelis EA, Busweiler LA, Kaptein AA, Middeldorp S. Quality of life after pulmonary embolism: the development of the PEmb-QoL questionnaire. J Thromb Haemost 2009; 7 (06) 1044-1046
  • 58 EuroQol Group. EuroQol–a new facility for the measurement of health-related quality of life. Health Policy 1990; 16 (03) 199-208
  • 59 Ware Jr JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992; 30 (06) 473-483
  • 60 Hays RD, Bjorner JB, Revicki DA, Spritzer KL, Cella D. Development of physical and mental health summary scores from the patient-reported outcomes measurement information system (PROMIS) global items. Qual Life Res 2009; 18 (07) 873-880
  • 61 Klok FA, Barco S, Siegerink B. Measuring functional limitations after venous thromboembolism: a call to action. Thromb Res 2019; 178: 59-62
  • 62 Boon GJAM, Barco S, Bertoletti L. et al. Measuring functional limitations after venous thromboembolism: optimization of the Post-VTE Functional Status (PVFS) scale. Thromb Res 2020; 190: 45-51
  • 63 Klok FA, Boon GJAM, Barco S. et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J 2020; 56 (01) 2001494
  • 64 Machado FVC, Meys R, Delbressine JM. et al. Construct validity of the Post-COVID-19 Functional Status Scale in adult subjects with COVID-19. Health Qual Life Outcomes 2021; 19 (01) 40
  • 65 Leite LC, Carvalho L, Queiroz DM. et al. Can the post-COVID-19 functional status scale discriminate between patients with different levels of fatigue, quality of life and functional performance?. Pulmonology 2022; 28 (03) 220-223
  • 66 Çalik Kütükcü E, Çakmak A, Kinaci E. et al. Reliability and validity of the Turkish version of Post-COVID-19 Functional Status Scale. Turk J Med Sci 2021; 51 (05) 2304-2310
  • 67 Lorca LA, Torres-Castro R, Ribeiro IL. et al. Linguistic validation and cross-cultural adaptation of the Post-COVID-19 Functional Status Scale for the Chilean population. Am J Phys Med Rehabil 2021; 100 (04) 313-320
  • 68 Lorca LA, Leão Ribeiro I, Torres-Castro R, Sacomori C, Rivera C. Psychometric properties of the Post-COVID 19 Functional Status scale for adult COVID 19 survivors [in Spanish]. Rehabilitacion (Madr) 2022; 56 (04) 337-343
  • 69 Moreno-Torres LA, Ventura-Alfaro CE. Validation of the Post-Covid-19 Functional Status Scale into Mexican-Spanish. J Rehabil Med Clin Commun 2021; 4: 1000070
  • 70 Alonso J, Bartlett SJ, Rose M. et al; PROMIS International Group. The case for an international patient-reported outcomes measurement information system (PROMIS®) initiative. Health Qual Life Outcomes 2013; 11: 210
  • 71 Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 2001; 16 (09) 606-613
  • 72 Spitzer RL, Kroenke K, Williams JB, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 2006; 166 (10) 1092-1097
  • 73 Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983; 67 (06) 361-370
  • 74 Worm-Smeitink M, Gielissen M, Bloot L. et al. The assessment of fatigue: psychometric qualities and norms for the Checklist Individual Strength. J Psychosom Res 2017; 98: 40-46
  • 75 Klok FA, Barco S, Konstantinides SV. et al. Determinants of diagnostic delay in chronic thromboembolic pulmonary hypertension: results from the European CTEPH Registry. Eur Respir J 2018; 52 (06) 1801687
  • 76 Boon GJAM, van den Hout WB, Barco S. et al. A model for estimating the health economic impact of earlier diagnosis of chronic thromboembolic pulmonary hypertension. ERJ Open Res 2021; 7 (03) 00719-02020
  • 77 Ende-Verhaar YM, Meijboom LJ, Kroft LJM. et al. Usefulness of standard computed tomography pulmonary angiography performed for acute pulmonary embolism for identification of chronic thromboembolic pulmonary hypertension: results of the InShape III study. J Heart Lung Transplant 2019; 38 (07) 731-738
  • 78 Boon GJAM, Jairam PM, Groot GMC. et al. Identification of chronic thromboembolic pulmonary hypertension on CTPAs performed for diagnosing acute pulmonary embolism depending on level of expertise. Eur J Intern Med 2021; 93: 64-70
  • 79 Boon GJAM, Ende-Verhaar YM, Beenen LFM. et al. Prediction of chronic thromboembolic pulmonary hypertension with standardised evaluation of initial computed tomography pulmonary angiography performed for suspected acute pulmonary embolism. Eur Radiol 2022; 32 (04) 2178-2187
  • 80 Lorenz G, Saeedan MB, Bullen J. et al. CT-based biomarkers for prediction of chronic thromboembolic pulmonary hypertension after an acute pulmonary embolic event. AJR Am J Roentgenol 2020; 215 (04) 800-806
  • 81 Braams NJ, Boon G, de Man FS. et al. Evolution of CT findings after anticoagulant treatment for acute pulmonary embolism in patients with and without an ultimate diagnosis of CTEPH. Eur Respir J 2021; 58 (06) 2100699
  • 82 de Perrot M, Gopalan D, Jenkins D. et al. Evaluation and management of patients with chronic thromboembolic pulmonary hypertension - consensus statement from the ISHLT. J Heart Lung Transplant 2021; 40 (11) 1301-1326
  • 83 Ende-Verhaar YM, Ruigrok D, Bogaard HJ. et al. Sensitivity of a simple noninvasive screening algorithm for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. TH Open 2018; 2 (01) e89-e95
  • 84 Klok FA, Dzikowska-Diduch O, Kostrubiec M. et al. Derivation of a clinical prediction score for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. J Thromb Haemost 2016; 14 (01) 121-128
  • 85 Klok FA, Surie S, Kempf T. et al. A simple non-invasive diagnostic algorithm for ruling out chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Thromb Res 2011; 128 (01) 21-26
  • 86 Klok FA, Tesche C, Rappold L. et al. External validation of a simple non-invasive algorithm to rule out chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Thromb Res 2015; 135 (05) 796-801
  • 87 Boon GJAM, Ende-Verhaar YM, Bavalia R. et al; InShape II study group. Non-invasive early exclusion of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: the InShape II study. Thorax 2021; 76 (10) 1002-1009
  • 88 Dzikowska-Diduch O, Kostrubiec M, Kurnicka K. et al. “The post-pulmonary syndrome - results of echocardiographic driven follow up after acute pulmonary embolism”. Thromb Res 2020; 186: 30-35
  • 89 Radtke T, Crook S, Kaltsakas G. et al. ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases. Eur Respir Rev 2019; 28 (154) 180101
  • 90 Fernandes TM, Alotaibi M, Strozza DM. et al. Dyspnea postpulmonary embolism from physiological dead space proportion and stroke volume defects during exercise. Chest 2020; 157 (04) 936-944
  • 91 Huang D, Guo J, Yang W, Liu J. Exercise capacity and ventilatory efficiency in patients with pulmonary embolism after short duration of anticoagulation therapy. Am J Med Sci 2020; 359 (03) 140-146
  • 92 McCabe C, Deboeck G, Harvey I. et al. Inefficient exercise gas exchange identifies pulmonary hypertension in chronic thromboembolic obstruction following pulmonary embolism. Thromb Res 2013; 132 (06) 659-665
  • 93 Held M, Hesse A, Gött F. et al. A symptom-related monitoring program following pulmonary embolism for the early detection of CTEPH: a prospective observational registry study. BMC Pulm Med 2014; 14: 141
  • 94 Fuld MK, Halaweish AF, Haynes SE, Divekar AA, Guo J, Hoffman EA. Pulmonary perfused blood volume with dual-energy CT as surrogate for pulmonary perfusion assessed with dynamic multidetector CT. Radiology 2013; 267 (03) 747-756
  • 95 Sanchez O, Helley D, Couchon S. et al. Perfusion defects after pulmonary embolism: risk factors and clinical significance. J Thromb Haemost 2010; 8 (06) 1248-1255
  • 96 Jaff MR, McMurtry MS, Archer SL. et al; American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; American Heart Association Council on Peripheral Vascular Disease; American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation 2011; 123 (16) 1788-1830
  • 97 Kim NH, Delcroix M, Jenkins DP. et al. Chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol 2013; 62 (25, Suppl): D92-D99
  • 98 Brenot P, Jaïs X, Taniguchi Y. et al. French experience of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Eur Respir J 2019; 53 (05) 1802095
  • 99 Olsson KM, Wiedenroth CB, Kamp JC. et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: the initial German experience. Eur Respir J 2017; 49 (06) 1602409
  • 100 Lakoski SG, Savage PD, Berkman AM. et al. The safety and efficacy of early-initiation exercise training after acute venous thromboembolism: a randomized clinical trial. J Thromb Haemost 2015; 13 (07) 1238-1244
  • 101 Noack F, Schmidt B, Amoury M. et al. Feasibility and safety of rehabilitation after venous thromboembolism. Vasc Health Risk Manag 2015; 11: 397-401
  • 102 Amoury M, Noack F, Kleeberg K. et al. Prognosis of patients with pulmonary embolism after rehabilitation. Vasc Health Risk Manag 2018; 14: 183-187
  • 103 Cires-Drouet RS, Mayorga-Carlin M, Toursavadkohi S. et al. Safety of exercise therapy after acute pulmonary embolism. Phlebology 2020; 35 (10) 824-832
  • 104 Rolving N, Brocki BC, Bloch-Nielsen JR. et al. Effect of a physiotherapist-guided home-based exercise intervention on physical capacity and patient-reported outcomes among patients with acute pulmonary embolism: a randomized clinical trial. JAMA Netw Open 2020; 3 (02) e200064
  • 105 Nopp S, Klok FA, Moik F. et al. Outpatient pulmonary rehabilitation in patients with persisting symptoms after pulmonary embolism. J Clin Med 2020; 9 (06) 1811
  • 106 Ghram A, Jenab Y, Soori R. et al. High-intensity interval training in patients with pulmonary embolism: a randomized controlled trial. Med Sci Sports Exerc 2021; 53 (10) 2037-2044
  • 107 Boon GJAM, Janssen SMJ, Barco S. et al. Efficacy and safety of a 12-week outpatient pulmonary rehabilitation program in Post-PE Syndrome. Thromb Res 2021; 206: 66-75
  • 108 Bliddal S, Banasik K, Pedersen OB. et al. Acute and persistent symptoms in non-hospitalized PCR-confirmed COVID-19 patients. Sci Rep 2021; 11 (01) 13153
  • 109 Carfì A, Bernabei R, Landi F. Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 2020; 324 (06) 603-605
  • 110 Chopra V, Flanders SA, O'Malley M, Malani AN, Prescott HC. Sixty-day outcomes among patients hospitalized with COVID-19. Ann Intern Med 2021; 174 (04) 576-578
  • 111 Crook H, Raza S, Nowell J, Young M, Edison P. Long covid-mechanisms, risk factors, and management. BMJ 2021; 374 (1648): n1648
  • 112 Davis HE, Assaf GS, McCorkell L. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021; 38: 101019
  • 113 Huang C, Huang L, Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021; 397 (10270): 220-232
  • 114 Naeije R, Caravita S. Phenotyping long COVID. Eur Respir J 2021; 58 (02) 2101763
  • 115 Nalbandian A, Sehgal K, Gupta A. et al. Post-acute COVID-19 syndrome. Nat Med 2021; 27 (04) 601-615
  • 116 Vaes AW, Goërtz YMJ, Van Herck M. et al. Recovery from COVID-19: a sprint or marathon? 6-month follow-up data from online long COVID-19 support group members. ERJ Open Res 2021; 7 (02) 00141-02021
  • 117 Klok FA, Kruip MJHA, van der Meer NJM. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-147
  • 118 Kaptein FHJ, Stals MAM, Grootenboers M. et al; Dutch COVID & Thrombosis Coalition. Incidence of thrombotic complications and overall survival in hospitalized patients with COVID-19 in the second and first wave. Thromb Res 2021; 199: 143-148
  • 119 Nopp S, Moik F, Jilma B, Pabinger I, Ay C. Risk of venous thromboembolism in patients with COVID-19: A systematic review and meta-analysis. Res Pract Thromb Haemost 2020; 4 (07) 1178-1191
  • 120 Llitjos JF, Leclerc M, Chochois C. et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost 2020; 18 (07) 1743-1746
  • 121 Helms J, Tacquard C, Severac F. et al; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020; 46 (06) 1089-1098
  • 122 Lodigiani C, Iapichino G, Carenzo L. et al; Humanitas COVID-19 Task Force. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res 2020; 191: 9-14
  • 123 Klok FA, Kruip MJHA, van der Meer NJM. et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res 2020; 191: 148-150
  • 124 Loo J, Spittle DA, Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax 2021; 76 (04) 412-420
  • 125 Wright FL, Vogler TO, Moore EE. et al. Fibrinolysis shutdown correlation with thromboembolic events in severe COVID-19 infection. J Am Coll Surg 2020; 231 (02) 193-203.e1
  • 126 Whyte CS, Morrow GB, Mitchell JL, Chowdary P, Mutch NJ. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J Thromb Haemost 2020; 18 (07) 1548-1555
  • 127 Ackermann M, Verleden SE, Kuehnel M. et al. pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020; 383 (02) 120-128
  • 128 Pasha AK, McBane RD, Chaudhary R. et al. Timing of venous thromboembolism diagnosis in hospitalized and non-hospitalized patients with COVID-19. Thromb Res 2021; 207: 150-157
  • 129 Pagnesi M, Baldetti L, Beneduce A. et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart 2020; 106 (17) 1324-1331
  • 130 Daugherty SE, Guo Y, Heath K. et al. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study. BMJ 2021; 373 (1098): n1098
  • 131 Kruip MJHA, Cannegieter SC, Ten Cate H. et al; Dutch COVID Thrombosis Coalition study group. Caging the dragon: research approach to COVID-19-related thrombosis. Res Pract Thromb Haemost 2021; 5 (02) 278-290
  • 132 Ghofrani H-A, D'Armini AM, Grimminger F. et al; CHEST-1 Study Group. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med 2013; 369 (04) 319-329
  • 133 Reichenberger F, Voswinckel R, Enke B. et al. Long-term treatment with sildenafil in chronic thromboembolic pulmonary hypertension. Eur Respir J 2007; 30 (05) 922-927
  • 134 Jaïs X, D'Armini AM, Jansa P. et al; Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension Study Group. Bosentan for treatment of inoperable chronic thromboembolic pulmonary hypertension: BENEFiT (Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension), a randomized, placebo-controlled trial. J Am Coll Cardiol 2008; 52 (25) 2127-2134
  • 135 Ghofrani HA, Simonneau G, D'Armini AM. et al; MERIT study investigators. Macitentan for the treatment of inoperable chronic thromboembolic pulmonary hypertension (MERIT-1): results from the multicentre, phase 2, randomised, double-blind, placebo-controlled study. Lancet Respir Med 2017; 5 (10) 785-794