CC BY 4.0 · Glob Med Genet 2022; 09(03): 219-225
DOI: 10.1055/s-0042-1751301
Original Article

The Role of Codon Usage, tRNA Availability, and Cell Proliferation in EBV Latency and (Re)Activation

1   Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
› Author Affiliations
Funding None.

Abstract

Epstein–Barr nuclear antigen 1 (EBNA1) protein synthesis is inhibited during Epstein–Barr virus (EBV) latency and is resumed in EBV (re)activation. In analyzing the molecular mechanisms underpinning the translation of EBNA1 in the human host, this article deals with two orders of data. First, it shows that the heavily biased codon usage of the EBNA1 open reading frame cannot be translated due to its noncompliance with the human codon usage pattern and the corresponding tRNA pool. The EBNA1 codon bias resides in the sequence composed exclusively of glycine and alanine, i.e., the Gly-Ala repeat (GAR). Removal of the nucleotide sequence coding for GAR results in an EBNA1 codon usage pattern with a lower codon bias, thus conferring translatability to EBNA1. Second, the data bring cell proliferation to the fore as a conditio sine qua non for qualitatively and quantitatively modifying the host's tRNA pool as required by the translational needs of EBNA1, thus enabling viral reactivation. Taken together, the present work provides a biochemical mechanism for the pathogen's shift from latency to (re)activation and confirms the role of human codon usage as a first-line tool of innate immunity in inhibiting pathogens' expression. Immunologically, this study cautions against using codon optimization and proliferation-inducing substances such as glucocorticoids and adjuvants, which can (re)activate the otherwise quiescent, asymptomatic, and innocuous EBV infection. Lastly, the data pose the question whether the causal pathogenic role attributed to EBV should instead be ascribed to the carcinogenesis-associated cellular proliferation.

Supplementary Material



Publication History

Received: 21 April 2022

Accepted: 09 May 2022

Article published online:
15 September 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Shannon-Lowe C, Rickinson A. The global landscape of EBV-associated tumors. Front Oncol 2019; 9: 713
  • 2 Becnel D, Abdelghani R, Nanbo A. et al. Pathogenic role of Epstein-Barr virus in lung cancers. Viruses 2021; 13 (05) 877
  • 3 Ayee R, Ofori MEO, Wright E, Quaye O. Epstein Barr Virus associated lymphomas and epithelia cancers in humans. J Cancer 2020; 11 (07) 1737-1750
  • 4 Guo R, Gewurz BE. Epigenetic control of the Epstein-Barr lifecycle. Curr Opin Virol 2022; 52: 78-88
  • 5 Sausen DG, Bhutta MS, Gallo ES, Dahari H, Borenstein R. Stress-induced Epstein-Barr virus reactivation. Biomolecules 2021; 11 (09) 1380
  • 6 Bauer M, Jasinski-Bergner S, Mandelboim O, Wickenhauser C, Seliger B. Epstein-Barr virus-associated malignancies and immune escape: the role of the tumor microenvironment and tumor cell evasion strategies. Cancers (Basel) 2021; 13 (20) 5189
  • 7 Kempkes B, Robertson ES. Epstein-Barr virus latency: current and future perspectives. Curr Opin Virol 2015; 14: 138-144
  • 8 Price AM, Luftig MA. To be or not IIb: a multi-step process for Epstein-Barr virus latency establishment and consequences for B cell tumorigenesis. PLoS Pathog 2015; 11 (03) e1004656
  • 9 Thorley-Lawson DA. EBV persistence—introducing the virus. Curr Top Microbiol Immunol 2015; 390 (Pt 1): 151-209
  • 10 Murata T, Sugimoto A, Inagaki T. et al. Molecular basis of Epstein-Barr virus latency establishment and lytic reactivation. Viruses 2021; 13 (12) 2344
  • 11 Frappier L. EBNA1. Curr Top Microbiol Immunol 2015; 391: 3-34
  • 12 Yates JL, Camiolo SM, Bashaw JM. The minimal replicator of Epstein-Barr virus oriP. J Virol 2000; 74 (10) 4512-4522
  • 13 Blake N, Lee S, Redchenko I. et al. Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 1997; 7 (06) 791-802
  • 14 Levitskaya J, Coram M, Levitsky V. et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 1995; 375 (6533): 685-688
  • 15 Yin Y, Manoury B, Fåhraeus R. Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 2003; 301 (5638): 1371-1374
  • 16 Apcher S, Komarova A, Daskalogianni C, Yin Y, Malbert-Colas L, Fåhraeus R. mRNA translation regulation by the Gly-Ala repeat of Epstein-Barr virus nuclear antigen 1. J Virol 2009; 83 (03) 1289-1298
  • 17 Daskalogianni C, Apcher S, Candeias MM, Naski N, Calvo F, Fåhraeus R. Gly-Ala repeats induce position- and substrate-specific regulation of 26 S proteasome-dependent partial processing. J Biol Chem 2008; 283 (44) 30090-30100
  • 18 Tellam JT, Lekieffre L, Zhong J, Lynn DJ, Khanna R. Messenger RNA sequence rather than protein sequence determines the level of self-synthesis and antigen presentation of the EBV-encoded antigen, EBNA1. PLoS Pathog 2012; 8 (12) e1003112
  • 19 Coppotelli G, Mughal N, Masucci MG. The Gly-Ala repeat modulates the interaction of Epstein-Barr virus nuclear antigen-1 with cellular chromatin. Biochem Biophys Res Commun 2013; 431 (04) 706-711
  • 20 Tellam JT, Zhong J, Lekieffre L. et al. mRNA structural constraints on EBNA1 synthesis impact on in vivo antigen presentation and early priming of CD8+ T cells. PLoS Pathog 2014; 10 (10) e1004423
  • 21 Lista MJ, Martins RP, Billant O. et al. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat Commun 2017; 8: 16043
  • 22 Wilson JB, Manet E, Gruffat H, Busson P, Blondel M, Fahraeus R. EBNA1: oncogenic activity, immune evasion and biochemical functions provide targets for novel therapeutic strategies against Epstein-Barr virus-associated cancers. Cancers (Basel) 2018; 10 (04) 109
  • 23 Deakyne JS, Malecka KA, Messick TE, Lieberman PM. Structural and functional basis for an EBNA1 hexameric ring in Epstein-Barr virus episome maintenance. J Virol 2017; 91 (19) e01046-e17
  • 24 Lucchese G, Kanduc D. Cytomegalovirus infection: the neurodevelopmental peptide signatures. Curr Drug Discov Technol 2018; 15 (03) 251-262
  • 25 Kanduc D. From hepatitis C virus immunoproteomics to rheumatology via cross-reactivity in one table. Curr Opin Rheumatol 2019; 31 (05) 488-492
  • 26 Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry. Antibodies (Basel) 2020; 9 (03) 33
  • 27 Capone G, Calabrò M, Lucchese G. et al. Peptide matching between Epstein-Barr virus and human proteins. Pathog Dis 2013; 69 (03) 205-212
  • 28 Kanduc D, Shoenfeld Y. From anti-EBV immune responses to the EBV diseasome via cross-reactivity. Glob Med Genet 2020; 7 (02) 51-63
  • 29 Kanduc D. Proteome-wide Epstein-Barr virus analysis of peptide sharing with human systemic lupus erythematosus autoantigens. Isr Med Assoc J 2019; 21 (07) 444-448
  • 30 Kanduc D. Human codon usage: the genetic basis of pathogen latency. Glob Med Genet 2021; 8 (03) 109-115
  • 31 Kanduc D. Role of codon usage and tRNA changes in rat cytomegalovirus latency and (re)activation. J Basic Microbiol 2016; 56 (06) 617-626
  • 32 Kanduc D. Rare human codons and HCMV translational regulation. J Mol Microbiol Biotechnol 2017; 27 (04) 213-216
  • 33 Kanduc D. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): codon usage and replicative fitness. Glob Med Genet 2020; 7 (03) 92-94
  • 34 Kanda T, Yajima M, Ikuta K. Epstein-Barr virus strain variation and cancer. Cancer Sci 2019; 110 (04) 1132-1139
  • 35 Liu CD, Lee HL, Peng CW. B cell-specific transcription activator PAX5 recruits p300 to support EBNA1-driven transcription. J Virol 2020; 94 (07) e02028-e19
  • 36 Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 2000; 28 (01) 292
  • 37 Grantham R, Gautier C, Gouy M, Mercier R, Pavé A. Codon catalog usage and the genome hypothesis. Nucleic Acids Res 1980; 8 (01) r49-r62
  • 38 de Boer HA, Kastelein RA. Biased codon usage: an exploration of its role in optimization of translation. In: Reznikoff W, Gold L. eds. Maximizing Gene Expression. Montvale, MA: Butterworth Publishers; 1986: 225-286
  • 39 Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 1981; 151 (03) 389-409
  • 40 Ikemura T, Ozeki H. Codon usage and transfer RNA contents: organism-specific codon-choice patterns in reference to the isoacceptor contents. Cold Spring Harb Symp Quant Biol 1983; 47 (Pt 2): 1087-1097
  • 41 Kanduc D, Farber E, Ghoshal A, Nagai M. Sequential alterations in tRNA population of 2-acetylaminofluorene-induced hepatocyte nodules. Biochem Biophys Res Commun 1993; 195 (03) 1309-1313
  • 42 Kanduc D. Modulation of in vitro kidney cell growth by hepatic transfer RNAs. Biochem Biophys Res Commun 1996; 221 (03) 735-738
  • 43 Kanduc D, Pagano G, Farber E. Changes in tRNA pattern in ethionine-induced rat putative preneoplastic hepatocyte nodules. Biochem Mol Biol Int 1996; 38 (06) 1191-1197
  • 44 Kanduc D. Changes of tRNA population during compensatory cell proliferation: differential expression of methionine-tRNA species. Arch Biochem Biophys 1997; 342 (01) 1-5
  • 45 Kanduc D, Grazia di Corcia M, Lucchese A, Natale C. Enhanced expression of initiator TRNA(Met) in human gastric and colorectal carcinoma. Biochem Mol Biol Int 1997; 43 (06) 1323-1329
  • 46 Kanduc D, Basile AM, Nardelli M. Translational regulation: possible significance of differential tRNA expression during the transition from quiescence to proliferation. In: Bannasch P, Kanduc D, Papa S, Tager JM. eds. Cell Growth and Oncogenesis. Basel: Birkhauser Verlag; 1998: 247-256
  • 47 De Pasquale C, Kanduc D. Modulation of HPV16 E7 translation by tRNAs in eukaryotic cell-free translation systems. Biochem Mol Biol Int 1998; 45 (05) 1005-1009
  • 48 Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 2016; 16 (12) 789-802
  • 49 Salyakina D, Tsinoremas NF. Viral expression associated with gastrointestinal adenocarcinomas in TCGA high-throughput sequencing data. Hum Genomics 2013; 7 (01) 23
  • 50 Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics 2009; 1 (02) 239-259
  • 51 Kanduc D, Ghoshal A, Quagliariello E, Farber E. DNA hypomethylation in ethionine-induced rat preneoplastic hepatocyte nodules. Biochem Biophys Res Commun 1988; 150 (02) 739-744
  • 52 Kanduc D, Rossiello MR, Aresta A, Cavazza C, Quagliariello E, Farber E. Transitory DNA hypomethylation during liver cell proliferation induced by a single dose of lead nitrate. Arch Biochem Biophys 1991; 286 (01) 212-216
  • 53 Szyf M, Eliasson L, Mann V, Klein G, Razin A. Cellular and viral DNA hypomethylation associated with induction of Epstein-Barr virus lytic cycle. Proc Natl Acad Sci U S A 1985; 82 (23) 8090-8094
  • 54 Miller G, El-Guindy A, Countryman J, Ye J, Gradoville L. Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res 2007; 97: 81-109
  • 55 Eigen M, Winkler-Oswatitsch R. Transfer-RNA, an early gene?. Naturwissenschaften 1981; 68 (06) 282-292
  • 56 Eigen M, Winkler-Oswatitsch R. Transfer-RNA: the early adaptor. Naturwissenschaften 1981; 68 (05) 217-228
  • 57 Purtilo DT, Sakamoto K. Reactivation of Epstein-Barr virus in pregnant women: social factors, and immune competence as determinants of lymphoproliferative diseases-a hypothesis. Med Hypotheses 1982; 8 (04) 401-408
  • 58 Christian LM, Iams JD, Porter K, Glaser R. Epstein-Barr virus reactivation during pregnancy and postpartum: effects of race and racial discrimination. Brain Behav Immun 2012; 26 (08) 1280-1287
  • 59 Haeri S, Baker AM, Boggess KA. Prevalence of Epstein-Barr virus reactivation in pregnancy. Am J Perinatol 2010; 27 (09) 715-719
  • 60 Ninomiya E, Hattori T, Toyoda M, Umezawa A, Hamazaki T, Shintaku H. Glucocorticoids promote neural progenitor cell proliferation derived from human induced pluripotent stem cells. Springerplus 2014; 3: 527
  • 61 Gündisch S, Boeckeler E, Behrends U, Amtmann E, Ehrhardt H, Jeremias I. Glucocorticoids augment survival and proliferation of tumor cells. Anticancer Res 2012; 32 (10) 4251-4261
  • 62 Finlay CA, Cristofalo VJ. Glucocorticoid enhancement of cellular proliferation in vitro. In: Boynton AL, Leffert HL. eds. Control of Animal Cell Proliferation. Vol. II. San Diego, CA: Academic Press; 1987: 203-218
  • 63 Phillips PD, Cristofalo VJ. Classification system based on the functional equivalency of mitogens that regulate WI-38 cell proliferation. Exp Cell Res 1988; 175 (02) 396-403
  • 64 Rosner BA, Cristofalo VJ. Hydrocortisone: a specific modulator of in vitro cell proliferation and aging. Mech Ageing Dev 1979; 9 (5–6): 485-496
  • 65 Neuberger TJ, Kalimi O, Regelson W, Kalimi M, De Vries GH. Glucocorticoids enhance the potency of Schwann cell mitogens. J Neurosci Res 1994; 38 (03) 300-313
  • 66 Cai J, Zheng T, Lotz M, Zhang Y, Masood R, Gill P. Glucocorticoids induce Kaposi's sarcoma cell proliferation through the regulation of transforming growth factor-beta. Blood 1997; 89 (05) 1491-1500
  • 67 Zheng Y, Izumi K, Li Y, Ishiguro H, Miyamoto H. Contrary regulation of bladder cancer cell proliferation and invasion by dexamethasone-mediated glucocorticoid receptor signals. Mol Cancer Ther 2012; 11 (12) 2621-2632
  • 68 Rafacho A, Cestari TM, Taboga SR, Boschero AC, Bosqueiro JR. High doses of dexamethasone induce increased beta-cell proliferation in pancreatic rat islets. Am J Physiol Endocrinol Metab 2009; 296 (04) E681-E689
  • 69 Atmani H, Chappard D, Basle MF. Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol. J Cell Biochem 2003; 89 (02) 364-372
  • 70 Bourcier T, Forgez P, Borderie V, Scheer S, Rostène W, Laroche L. Regulation of human corneal epithelial cell proliferation and apoptosis by dexamethasone. Invest Ophthalmol Vis Sci 2000; 41 (13) 4133-4141
  • 71 Kawamura A, Tamaki N, Kokunai T. Effect of dexamethasone on cell proliferation of neuroepithelial tumor cell lines. Neurol Med Chir (Tokyo) 1998; 38 (10) 633-638 , discussion 638–640
  • 72 Chauhan N, Tiwari S, Iype T, Jain U. An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators. Expert Rev Vaccines 2017; 16 (05) 491-502
  • 73 Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol 2013; 4: 114
  • 74 Zhang R, Wang C, Guan Y. et al. Manganese salts function as potent adjuvants. Cell Mol Immunol 2021; 18 (05) 1222-1234
  • 75 Kanduc D. Peptide cross-reactivity: the original sin of vaccines. Front Biosci (Schol Ed) 2012; 4 (04) 1393-1401