CC BY-NC-ND 4.0 · Revista Urología Colombiana / Colombian Urology Journal 2022; 31(03): e130-e140
DOI: 10.1055/s-0042-1756171
Review Article | Artículo de Revisión

Frequentist and Bayesian Hypothesis Testing: An Intuitive Guide for Urologists and Clinicians

Pruebas de hipótesis frecuentista y bayesiana: Una Guía intuitiva para urólogos y clínicos
1   Urology Research Group, Instituto Uromédica, Universidad de Santander, Bucaramanga, Colombia
Daniel Sánchez
1   Urology Research Group, Instituto Uromédica, Universidad de Santander, Bucaramanga, Colombia
Cesar González
1   Urology Research Group, Instituto Uromédica, Universidad de Santander, Bucaramanga, Colombia
Fabio González
1   Urology Research Group, Instituto Uromédica, Universidad de Santander, Bucaramanga, Colombia
Angélica Rueda
1   Urology Research Group, Instituto Uromédica, Universidad de Santander, Bucaramanga, Colombia
Sebastián Ortiz
1   Urology Research Group, Instituto Uromédica, Universidad de Santander, Bucaramanga, Colombia
› Author Affiliations


Given the limitations of frequentist method for null hypothesis significance testing, different authors recommend alternatives such as Bayesian inference. A poor understanding of both statistical frameworks is common among clinicians. The present is a gentle narrative review of the frequentist and Bayesian methods intended for physicians not familiar with mathematics. The frequentist p-value is the probability of finding a value equal to or higher than that observed in a study, assuming that the null hypothesis (H0) is true. The H0 is rejected or not based on a p threshold of 0.05, and this dichotomous approach does not express the probability that the alternative hypothesis (H1) is true. The Bayesian method calculates the probability of H1 and H0 considering prior odds and the Bayes factor (Bf). Prior odds are the researcher's belief about the probability of H1, and the Bf quantifies how consistent the data is concerning H1 and H0. The Bayesian prediction is not dichotomous but is expressed in continuous scales of the Bf and of the posterior odds. The JASP software enables the performance of both frequentist and Bayesian analyses in a friendly and intuitive way, and its application is displayed at the end of the paper. In conclusion, the frequentist method expresses how consistent the data is with H0 in terms of p-values, with no consideration of the probability of H1. The Bayesian model is a more comprehensive prediction because it quantifies in continuous scales the evidence for H1 versus H0 in terms of the Bf and the posterior odds.


Dadas las limitaciones del método de significancia frecuentista basado en la hipótesis nula, diferentes autores recomiendan alternativas como la inferencia bayesiana. Es común entre los médicos una comprensión deficiente de ambos marcos estadísticos. Esta es una revisión narrativa amigable de los métodos frecuentista y bayesiano dirigida quienes no están familiarizados con las matemáticas. El valor de p frecuentista es la probabilidad de encontrar un valor igual o superior al observado en un estudio, asumiendo que la hipótesis nula (H0) es cierta. La H0 se rechaza o no con base en un umbral p de 0.05, y este enfoque dicotómico no expresa la probabilidad de que la hipótesis alternativa (H1) sea verdadera. El método bayesiano calcula la probabilidad de H1 y H0 considerando las probabilidades a priori y el factor de Bayes (fB). Las probabilidades a priori son la creencia del investigador sobre la probabilidad de H1, y el fB cuantifica cuán consistentes son los datos con respecto a H1 y H0. La predicción bayesiana no es dicotómica, sino que se expresa en escalas continuas del fB y de las probabilidades a posteriori. El programa JASP permite realizar análisis frecuentista y bayesiano de una forma simple e intuitiva, y su aplicación se muestra al final del documento. En conclusión, el método frecuentista expresa cuán consistentes son los datos con H0 en términos de valores p, sin considerar la probabilidad de H1. El modelo bayesiano es una predicción más completa porque cuantifica en escalas continuas la evidencia de H1 versus H0 en términos del fB y de las probabilidades a posteriori.

Financial Support

The authors declare they have received no financial support pertaining to the present article.

Publication History

Received: 22 June 2022

Accepted: 22 June 2022

Article published online:
28 September 2022

© 2022. Sociedad Colombiana de Urología. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

  • References

  • 1 Fisher RA. Statistical methods for research workers. Edinburgh (UK): Oliver and Boyd; 1934
  • 2 Pearson K. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random Sampling. Philos Mag 1900; 50 (05) 157-175
  • 3 Hopkins BL, Cole BL, Mason TL. A critique of the usefulness of inferential statistics in applied behavior analysis. Behav Anal 1998; 21 (01) 125-137
  • 4 Goodman SN. p values, hypothesis tests, and likelihood: implications for epidemiology of a neglected historical debate. Am J Epidemiol 1993; 137 (05) 485-496 , discussion 497–501
  • 5 Bakan D. The test of significance in psychological research. Psychol Bull 1966; 66 (06) 423-437
  • 6 Ioannidis JPA. Why most published research findings are false. PLoS Med 2005; 2 (08) e124
  • 7 Assel M, Sjoberg D, Elders A. et al. Guidelines for Reporting of Statistics for Clinical Research in Urology. Eur Urol 2019; 75 (03) 358-367
  • 8 Assel M, Sjoberg D, Elders A. et al. Guidelines for reporting of statistics for clinical research in urology. J Urol 2019; 201 (03) 595-604
  • 9 Assel M, Sjoberg D, Elders A. et al. Guidelines for reporting of statistics for clinical research in urology. BJU Int 2019; 123 (03) 401-410
  • 10 Wasserstein RL, Lazar NA. The ASA Statement on p-Values: Context, Process, and Purpose. Am Stat 2016; 70 (02) 129-133
  • 11 Westover MB, Westover KD, Bianchi MT. Significance testing as perverse probabilistic reasoning. BMC Med 2011; 9 (20) 20
  • 12 Biau DJ, Jolles BM, Porcher R. P value and the theory of hypothesis testing: an explanation for new researchers. Clin Orthop Relat Res 2010; 468 (03) 885-892
  • 13 Mark DB, Lee KL, Harrell Jr FE. Understanding the role of P values and hypothesis tests in clinical research. JAMA Cardiol 2016; 1 (09) 1048-1054
  • 14 Lumley T, Diehr P, Emerson S, Chen L. The importance of the normality assumption in large public health data sets. Annu Rev Public Health 2002; 23 (01) 151-169
  • 15 Altman DG, Bland JM. Statistics notes: the normal distribution. BMJ 1995; 310 (6975): 298
  • 16 Pandis N. The sampling distribution. Am J Orthod Dentofacial Orthop 2015; 147 (04) 517-519
  • 17 Altman DG, Bland JM. Uncertainty beyond sampling error. BMJ 2014; 349: g7065
  • 18 Sedgwick P. A comparison of sampling error and standard error. BMJ 2015; 351: h3577
  • 19 Ranstam J. Sampling uncertainty in medical research. Osteoarthritis Cartilage 2009; 17 (11) 1416-1419
  • 20 Kwak SG, Kim JH. Central limit theorem: the cornerstone of modern statistics. Korean J Anesthesiol 2017; 70 (02) 144-156
  • 21 Guyatt G, Jaeschke R, Heddle N, Cook D, Shannon H, Walter S. Basic statistics for clinicians: 1. Hypothesis testing. CMAJ 1995; 152 (01) 27-32
  • 22 Sedgwick P. Understanding confidence intervals. BMJ 2014; 349: g6051
  • 23 Bendtsen M. A gentle introduction to the comparison between null hypothesis testing and Bayesian analysis: Reanalysis of two randomized controlled trials. J Med Internet Res 2018; 20 (10) e10873
  • 24 Etz A, Vandekerckhove J. Introduction to Bayesian Inference for Psychology. Psychon Bull Rev 2018; 25 (01) 5-34
  • 25 Donovan T, Mickey R. Bayesian Statistics for Beginners. Oxford (UK): Oxford University Press; 2019
  • 26 Kruschke JK, Liddell TM. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon Bull Rev 2018; 25 (01) 178-206
  • 27 Cleophas T, Zwinderman A. Modern Bayesian Statistics in Clinical Research. Cham (Switzerland): Springer International Publishing; 2018
  • 28 Lee M, Wagenmakers EJ. Bayesian Cognitive Modeling: a Practical Course. New York (NY): Cambridge Universtity Press; 2013
  • 29 Andraszewicz S, Scheibehenne B, Rieskamp J, Grasman R, Verhagen J, Wagenmakers EJ. An Introduction to Bayesian Hypothesis Testing for Management Research. J Manage 2015; 41 (02) 521-543
  • 30 Hoijtink H, Mulder J, van Lissa C, Gu X. A tutorial on testing hypotheses using the Bayes factor. Psychol Methods 2019; 24 (05) 539-556
  • 31 van de Schoot R, Kaplan D, Denissen J, Asendorpf JB, Neyer FJ, van Aken MAG. A gentle introduction to bayesian analysis: applications to developmental research. Child Dev 2014; 85 (03) 842-860
  • 32 Morey RD, Romeijn JW, Rouder JN. The philosophy of Bayes factors and the quantification of statistical evidence. J Math Psychol 2016; 72: 6-18
  • 33 Goodman SN. Toward evidence-based medical statistics. 2: The Bayes factor. Ann Intern Med 1999; 130 (12) 1005-1013
  • 34 Quintana DS, Williams DR. Bayesian alternatives for common null-hypothesis significance tests in psychiatry: a non-technical guide using JASP. BMC Psychiatry 2018; 18 (01) 178
  • 35 Etz A. Introduction to the Concept of Likelihood and Its Applications. Adv Methods Pract Psychol Sci 2018; 1 (01) 60-69
  • 36 Greenland S. Bayesian perspectives for epidemiological research: I. Foundations and basic methods. Int J Epidemiol 2006; 35 (03) 765-775
  • 37 Kruschke JK. Bayesian estimation supersedes the t test. J Exp Psychol Gen 2013; 142 (02) 573-603
  • 38 Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon Bull Rev 2009; 16 (02) 225-237
  • 39 Ferreira D, Barthoulot M, Pottecher J, Torp KD, Diemunsch P, Meyer N. Theory and practical use of Bayesian methods in interpreting clinical trial data: a narrative review. Br J Anaesth 2020; 125 (02) 201-207
  • 40 Kelter R. Bayesian alternatives to null hypothesis significance testing in biomedical research: a non-technical introduction to Bayesian inference with JASP. BMC Med Res Methodol 2020; 20 (01) 142
  • 41 van Doorn J, van den Bergh D, Böhm U. et al. The JASP guidelines for conducting and reporting a Bayesian analysis. Psychon Bull Rev 2021; 28 (03) 813-826
  • 42 Keysers C, Gazzola V, Wagenmakers EJ. Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence. Nat Neurosci 2020; 23 (07) 788-799
  • 43 Wagenmakers EJ, Marsman M, Jamil T. et al. Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychon Bull Rev 2018; 25 (01) 35-57
  • 44 Masson MEJ. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav Res Methods 2011; 43 (03) 679-690
  • 45 Wagenmakers EJ, Lodewyckx T, Kuriyal H, Grasman R. Bayesian hypothesis testing for psychologists: a tutorial on the Savage-Dickey method. Cognit Psychol 2010; 60 (03) 158-189
  • 46 Morey RD, Rouder JN. Bayes factor approaches for testing interval null hypotheses. Psychol Methods 2011; 16 (04) 406-419
  • 47 Heck DW. A caveat on the Savage-Dickey density ratio: The case of computing Bayes factors for regression parameters. Br J Math Stat Psychol 2019; 72 (02) 316-333
  • 48 Kruschke JK, Liddell TM. Bayesian data analysis for newcomers. Psychon Bull Rev 2018; 25 (01) 155-177
  • 49 Hamra G, MacLehose R, Richardson D. Markov chain Monte Carlo: an introduction for epidemiologists. Int J Epidemiol 2013; 42 (02) 627-634
  • 50 Rouder JN. Optional stopping: no problem for Bayesians. Psychon Bull Rev 2014; 21 (02) 301-308