CC BY 4.0 · Semin Thromb Hemost 2023; 49(03): 279-283
DOI: 10.1055/s-0042-1756705
Review Article

The Pathophysiological Role of Platelet-Derived Extracellular Vesicles

Meryem Mabrouk
1   Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
2   Department of Biology, Faculty of Sciences, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca, Morocco
,
Fadila Guessous
3   Research of Center, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
,
Abdallah Naya
2   Department of Biology, Faculty of Sciences, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca, Morocco
,
Yahye Merhi
4   Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Center, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
,
Younes Zaid
1   Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
2   Department of Biology, Faculty of Sciences, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca, Morocco
› Author Affiliations
Funding Y.Z. and M.M. are supported by Balvi Filantropic Fund (PR-BLV-20220527).

Abstract

Platelets are very abundant in the blood, where they play a role in hemostasis, inflammation, and immunity. When activated, platelets undergo a conformational change that allows the release of numerous effector molecules as well as the production of extracellular vesicles, which are circulating submicron vesicles (10 to 1,000 nm in diameter) released into the extracellular space. Extracellular vesicles are formed by the budding of platelet and they carry some of its contents, including nucleic acids, surface proteins, and organelles. While platelets cannot cross tissue barriers, platelet-derived extracellular vesicles can enter the lymph, bone marrow, and synovial fluid. This allows the transfer of diverse contents carried by these platelet-derived vesicles to cell recipients and organs inaccessible to platelets where they can perform many functions. This review highlights the importance of these platelet-derived extracellular vesicles under different physiological and pathophysiological conditions.

Authors' Contributions

M.M., F.G., A.N., and Y.Z. contributed to literature search and writing of this review. Y.M. and Y.Z. designed the structure and content of this review. Y.Z. provided the figure. All authors approved the submitted version of the manuscript.




Publication History

Article published online:
29 September 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19 (04) 213-228
  • 2 Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9 (06) 654-659
  • 3 Stone AP, Nikols E, Freire D, Machlus KR. The pathobiology of platelet and megakaryocyte extracellular vesicles: A (c)lot has changed. J Thromb Haemost 2022; 20 (07) 1550-1558
  • 4 Aatonen M, Grönholm M, Siljander PR. Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Hemost 2012; 38 (01) 102-113
  • 5 Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem 1946; 166 (01) 189-197
  • 6 Sinauridze EI, Kireev DA, Popenko NY. et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97 (03) 425-434
  • 7 Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967; 13 (03) 269-288
  • 8 Théry C, Witwer KW, Aikawa E. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7 (01) 1535750
  • 9 Kranendonk ME, Visseren FL, van Balkom BW. et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring) 2014; 22 (05) 1296-1308
  • 10 Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200 (04) 373-383
  • 11 van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012; 64 (03) 676-705
  • 12 Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30: 255-289
  • 13 Poon IK, Lucas CD, Rossi AG, Ravichandran KS. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 2014; 14 (03) 166-180
  • 14 Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 2019; 8 (04) E307
  • 15 Lakhter AJ, Sims EK. Minireview: emerging roles for extracellular vesicles in diabetes and related metabolic disorders. Mol Endocrinol 2015; 29 (11) 1535-1548
  • 16 Flaumenhaft R, Dilks JR, Richardson J. et al. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood 2009; 113 (05) 1112-1121
  • 17 Benameur T, Osman A, Parray A, Ait Hssain A, Munusamy S, Agouni A. Molecular mechanisms underpinning microparticle-mediated cellular injury in cardiovascular complications associated with diabetes. Oxid Med Cell Longev 2019; 2019: 6475187
  • 18 Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil SJ. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem 1989; 264 (29) 17049-17057
  • 19 Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999; 94 (11) 3791-3799
  • 20 Melki I, Tessandier N, Zufferey A, Boilard E. Platelet microvesicles in health and disease. Platelets 2017; 28 (03) 214-221
  • 21 Keuren JF, Magdeleyns EJ, Govers-Riemslag JW, Lindhout T, Curvers J. Effects of storage-induced platelet microparticles on the initiation and propagation phase of blood coagulation. Br J Haematol 2006; 134 (03) 307-313
  • 22 Keuren JF, Magdeleyns EJ, Bennaghmouch A, Bevers EM, Curvers J, Lindhout T. Microparticles adhere to collagen type I, fibrinogen, von Willebrand factor and surface immobilised platelets at physiological shear rates. Br J Haematol 2007; 138 (04) 527-533
  • 23 Berckmans RJ, Nieuwland R, Böing AN, Romijn FP, Hack CE, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 2001; 85 (04) 639-646
  • 24 Zaid Y, Guessous F. The ongoing enigma of SARS-CoV-2 and platelet interaction. Res Pract Thromb Haemost 2022; 6 (01) e12642
  • 25 Tans G, Rosing J, Thomassen MC, Heeb MJ, Zwaal RF, Griffin JH. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 1991; 77 (12) 2641-2648
  • 26 Dahlbäck B, Wiedmer T, Sims PJ. Binding of anticoagulant vitamin K-dependent protein S to platelet-derived microparticles. Biochemistry 1992; 31 (51) 12769-12777
  • 27 Boilard E, Duchez AC, Brisson A. The diversity of platelet microparticles. Curr Opin Hematol 2015; 22 (05) 437-444
  • 28 van der Zee PM, Biró E, Ko Y. et al. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem 2006; 52 (04) 657-664
  • 29 Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost 2010; 8 (11) 2358-2368
  • 30 Sadallah S, Amicarella F, Eken C, Iezzi G, Schifferli JA. Ectosomes released by platelets induce differentiation of CD4+T cells into T regulatory cells. Thromb Haemost 2014; 112 (06) 1219-1229
  • 31 Dinkla S, van Cranenbroek B, van der Heijden WA. et al. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood 2016; 127 (16) 1976-1986
  • 32 Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 2008; 111 (10) 5028-5036
  • 33 Yari F, Motefaker M, Nikougoftar M, Khayati Z. Interaction of platelet-derived microparticles with a human b-lymphoblast cell line: a clue for the immunologic function of the microparticles. Transfus Med Hemother 2018; 45 (01) 55-61
  • 34 Tessandier N, Melki I, Cloutier N. et al. Platelets disseminate extracellular vesicles in lymph in rheumatoid arthritis. Arterioscler Thromb Vasc Biol 2020; 40 (04) 929-942
  • 35 Milasan A, Tessandier N, Tan S, Brisson A, Boilard E, Martel C. Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis. J Extracell Vesicles 2016; 5: 31427
  • 36 György B, Szabó TG, Pásztói M. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68 (16) 2667-2688
  • 37 Laffont B, Corduan A, Plé H. et al. Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood 2013; 122 (02) 253-261
  • 38 Mittelbrunn M, Sánchez-Madrid F. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 2012; 13 (05) 328-335
  • 39 Boulanger CM, Loyer X, Rautou PE, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 2017; 14 (05) 259-272
  • 40 Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 2005; 67 (01) 30-38
  • 41 Vicencio JM, Yellon DM, Sivaraman V. et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol 2015; 65 (15) 1525-1536
  • 42 Puhm F, Allaeys I, Lacasse E. et al. Platelet activation by SARS-CoV-2 implicates the release of active tissue factor by infected cells. Blood Adv 2022; 6 (12) 3593-3605
  • 43 Zaid Y, Puhm F, Allaeys I. et al. Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circ Res 2020; 127: 1404-1418
  • 44 Allaoui A, Khawaja AA, Badad O. et al. Platelet function in viral immunity and SARS-CoV-2 infection. Semin Thromb Hemost 2021; 47 (04) 419-426
  • 45 Guervilly C, Bonifay A, Burtey S. et al. Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19. Blood Adv 2021; 5 (03) 628-634
  • 46 Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep 2012; 64 (05) 1020-1037
  • 47 Boilard E, Blanco P, Nigrovic PA. Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol 2012; 8 (09) 534-542
  • 48 Satta N, Toti F, Fressinaud E, Meyer D, Freyssinet JM. Scott syndrome: an inherited defect of the procoagulant activity of platelets. Platelets 1997; 8 (2-3): 117-124
  • 49 Wiklander OPB, Brennan MA, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 2019; 11 (492) eaav8521
  • 50 Burnouf T, Goubran HA, Chou ML, Devos D, Radosevic M. Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev 2014; 28 (04) 155-166
  • 51 Aatonen MT, Ohman T, Nyman TA, Laitinen S, Grönholm M, Siljander PR. Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles 2014;3
  • 52 Paulis L, Fauconnier J, Cazorla O. et al. Activation of Sonic hedgehog signaling in ventricular cardiomyocytes exerts cardioprotection against ischemia reperfusion injuries. Sci Rep 2015; 5: 7983
  • 53 Augustine D, Ayers LV, Lima E. et al. Dynamic release and clearance of circulating microparticles during cardiac stress. Circ Res 2014; 114 (01) 109-113
  • 54 Martinez MC, Tual-Chalot S, Leonetti D, Andriantsitohaina R. Microparticles: targets and tools in cardiovascular disease. Trends Pharmacol Sci 2011; 32 (11) 659-665
  • 55 Słomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large extracellular vesicles: have we found the holy grail of inflammation?. Front Immunol 2018; 9: 2723
  • 56 French SL, Butov KR, Allaeys I. et al. Platelet-derived extracellular vesicles infiltrate and modify the bone marrow during inflammation. Blood Adv 2020; 4 (13) 3011-3023
  • 57 Sadallah S, Eken C, Martin PJ, Schifferli JA. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol 2011; 186 (11) 6543-6552
  • 58 Ceroi A, Delettre FA, Marotel C. et al. The anti-inflammatory effects of platelet-derived microparticles in human plasmacytoid dendritic cells involve liver X receptor activation. Haematologica 2016; 101 (03) e72-e76
  • 59 Miyazawa B, Trivedi A, Togarrati PP. et al. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles. J Trauma Acute Care Surg 2019; 86 (06) 931-942
  • 60 Hayon Y, Dashevsky O, Shai E, Brill A, Varon D, Leker RR. Platelet microparticles induce angiogenesis and neurogenesis after cerebral ischemia. Curr Neurovasc Res 2012; 9 (03) 185-192
  • 61 Hayon Y, Dashevsky O, Shai E, Varon D, Leker RR. Platelet microparticles promote neural stem cell proliferation, survival and differentiation. J Mol Neurosci 2012; 47 (03) 659-665
  • 62 Chou ML, Wu JW, Gouel F. et al. Tailor-made purified human platelet lysate concentrated in neurotrophins for treatment of Parkinson's disease. Biomaterials 2017; 142: 77-89
  • 63 Leiter O, Walker TL. Platelets in neurodegenerative conditions-friend or foe?. Front Immunol 2020; 11: 747
  • 64 Perez-Pujol S, Marker PH, Key NS. Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: studies using a new digital flow cytometer. Cytometry A 2007; 71 (01) 38-45
  • 65 Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood 2015; 126 (05) 582-588
  • 66 Wu YW, Huang CC, Changou CA, Lu LS, Goubran H, Burnouf T. Clinical-grade cryopreserved doxorubicin-loaded platelets: role of cancer cells and platelet extracellular vesicles activation loop. J Biomed Sci 2020; 27 (01) 45
  • 67 Goubran H, Sabry W, Kotb R, Seghatchian J, Burnouf T. Platelet microparticles and cancer: an intimate cross-talk. Transfus Apheresis Sci 2015; 53 (02) 168-172
  • 68 Kailashiya J, Gupta V, Dash D. Engineered human platelet-derived microparticles as natural vectors for targeted drug delivery. Oncotarget 2019; 10 (56) 5835-5846
  • 69 Michael JV, Wurtzel JGT, Mao GF. et al. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood 2017; 130 (05) 567-580