Semin Liver Dis 2023; 43(01): 001-012
DOI: 10.1055/s-0042-1758833
Review Article

Recent Advances in Intrahepatic Biliary Epithelial Heterogeneity

Ashleigh Little
1   Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
,
Abigail Medford
1   Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
,
April O'Brien
1   Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
,
Jonathan Childs
1   Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
,
Sharon Pan
1   Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
,
Jolaine Machado
1   Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
,
Sanjukta Chakraborty
1   Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
,
Shannon Glaser
1   Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
› Author Affiliations
Funding This work was supported by the Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, the NIH grants DK110035 to S.G.


Abstract

Biliary epithelium (i.e., cholangiocytes) is a heterogeneous population of epithelial cells in the liver, which line small and large bile ducts and have individual responses and functions dependent on size and location in the biliary tract. We discuss the recent findings showing that the intrahepatic biliary tree is heterogeneous regarding (1) morphology and function, (2) hormone expression and signaling (3), response to injury, and (4) roles in liver regeneration. This review overviews the significant characteristics and differences of the small and large cholangiocytes. Briefly, it outlines the in vitro and in vivo models used in the heterogeneity evaluation. In conclusion, future studies addressing biliary heterogeneity's role in the pathogenesis of liver diseases characterized by ductular reaction may reveal novel therapeutic approaches.



Publication History

Article published online:
15 December 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 2019; 16 (05) 269-281
  • 2 Roberts SK, Ludwig J, Larusso NF. The pathobiology of biliary epithelia. Gastroenterology 1997; 112 (01) 269-279
  • 3 Han Y, Glaser S, Meng F. et al. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp Biol Med (Maywood) 2013; 238 (05) 549-565
  • 4 Kalra A, Yetiskul E, Wehrle CJ, Tuma F. Physiology, Liver. StatPearls; 2022
  • 5 Alpini G, Roberts S, Kuntz SM. et al. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology 1996; 110 (05) 1636-1643
  • 6 Bort R, Zaret KS. Embryonic Development of the Liver. Wiley; 2009: 17-25
  • 7 Tabibian JH, Masyuk AI, Masyuk TV, O'Hara SP, LaRusso NF. Physiology of cholangiocytes. Compr Physiol 2013; 3 (01) 541-565
  • 8 Antoniou A, Raynaud P, Cordi S. et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 2009; 136 (07) 2325-2333
  • 9 Tam PKH, Yiu RS, Lendahl U, Andersson ER. Cholangiopathies - towards a molecular understanding. EBioMedicine 2018; 35: 381-393
  • 10 Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell 2010; 18 (02) 175-189
  • 11 Camp JG, Sekine K, Gerber T. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 2017; 546 (7659): 533-538
  • 12 Strazzabosco M, Fabris L. Functional anatomy of normal bile ducts. Anat Rec (Hoboken) 2008; 291 (06) 653-660
  • 13 Glaser SS, Gaudio E, Rao A. et al. Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Lab Invest 2009; 89 (04) 456-469
  • 14 Ludwig J. New concepts in biliary cirrhosis. Semin Liver Dis 1987; 7 (04) 293-301
  • 15 Franchitto A, Onori P, Renzi A. et al. Recent advances on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. Ann Transl Med 2013; 1 (03) 27
  • 16 Saxena R, Theise N. Canals of Hering: recent insights and current knowledge. Semin Liver Dis 2004; 24 (01) 43-48
  • 17 Glaser S, Francis H, Demorrow S. et al. Heterogeneity of the intrahepatic biliary epithelium. World J Gastroenterol 2006; 12 (22) 3523-3536
  • 18 Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63 (04) 1023-1037
  • 19 Roskams TA, Theise ND, Balabaud C. et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 2004; 39 (06) 1739-1745
  • 20 Mansini AP, Peixoto E, Thelen KM, Gaspari C, Jin S, Gradilone SA. The cholangiocyte primary cilium in health and disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (4, Pt B): 1245-1253
  • 21 Lanzoni G, Cardinale V, Carpino G. The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: a new reference frame for disease and regeneration. Hepatology 2016; 64 (01) 277-286
  • 22 Krishna M. Microscopic anatomy of the liver. Clin Liver Dis (Hoboken) 2013; 2 (Suppl. 01) S4-S7
  • 23 Benedetti A, Bassotti C, Rapino K, Marucci L, Jezequel AM. A morphometric study of the epithelium lining the rat intrahepatic biliary tree. J Hepatol 1996; 24 (03) 335-342
  • 24 Ishii M, Vroman B, LaRusso NF. Isolation and morphologic characterization of bile duct epithelial cells from normal rat liver. Gastroenterology 1989; 97 (05) 1236-1247
  • 25 Sato K, Meng F, Giang T, Glaser S, Alpini G. Mechanisms of cholangiocyte responses to injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (4, Pt B): 1262-1269
  • 26 Mancinelli R, Franchitto A, Glaser S. et al. GABA induces the differentiation of small into large cholangiocytes by activation of Ca(2+) /CaMK I-dependent adenylyl cyclase 8. Hepatology 2013; 58 (01) 251-263
  • 27 Mancinelli R, Franchitto A, Gaudio E. et al. After damage of large bile ducts by gamma-aminobutyric acid, small ducts replenish the biliary tree by amplification of calcium-dependent signaling and de novo acquisition of large cholangiocyte phenotypes. Am J Pathol 2010; 176 (04) 1790-1800
  • 28 Hall C, Sato K, Wu N. et al. Regulators of cholangiocyte proliferation. Gene Expr 2017; 17 (02) 155-171
  • 29 Gaudio E, Onori P, Pannarale L, Alvaro D. Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis: a morphological study. Gastroenterology 1996; 111 (04) 1118-1124
  • 30 Alpini G, Ulrich C, Roberts S. et al. Molecular and functional heterogeneity of cholangiocytes from rat liver after bile duct ligation. Am J Physiol 1997; 272 (2, Pt 1): G289-G297
  • 31 Liedtke C, Luedde T, Sauerbruch T. et al. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenesis Tissue Repair 2013; 6 (01) 19
  • 32 Fickert P, Stöger U, Fuchsbichler A. et al. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 2007; 171 (02) 525-536
  • 33 Aizarani N, Saviano A. , Sagar et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 2019; 572 (7768): 199-204
  • 34 Francis HL, Demorrow S, Franchitto A. et al. Histamine stimulates the proliferation of small and large cholangiocytes by activation of both IP3/Ca2+ and cAMP-dependent signaling mechanisms. Lab Invest 2012; 92 (02) 282-294
  • 35 Komuta M, Govaere O, Vandecaveye V. et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology 2012; 55 (06) 1876-1888
  • 36 Li B, Dorrell C, Canady PS, Wakefield L. Identification and isolation of clonogenic cholangiocyte in mouse. Methods Mol Biol 2019; 1905: 19-27
  • 37 Sampaziotis F, Muraro D, Tysoe OC. et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 2021; 371 (6531): 839-846
  • 38 Sampaziotis F, de Brito MC, Madrigal P. et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol 2015; 33 (08) 845-852
  • 39 Maroni L, Haibo B, Ray D. et al. Functional and structural features of cholangiocytes in health and disease. Cell Mol Gastroenterol Hepatol 2015; 1 (04) 368-380
  • 40 Sato K, Meng F, Venter J, Giang T, Glaser S, Alpini G. Author correction: the role of the secretin/secretin receptor axis in inflammatory cholangiocyte communication via extracellular vesicles. Sci Rep 2018; 8 (01) 11238
  • 41 Luo ZL, Cheng L, Wang T. et al. Bile acid transporters are expressed and heterogeneously distributed in rat bile ducts. Gut Liver 2019; 13 (05) 569-575
  • 42 Priester S, Wise C, Glaser SS. Involvement of cholangiocyte proliferation in biliary fibrosis. World J Gastrointest Pathophysiol 2010; 1 (02) 30-37
  • 43 Salas-Silva S, Simoni-Nieves A, Chávez-Rodríguez L, Gutiérrez-Ruiz MC, Bucio L, Quiroz LEG. Mechanism of cholangiocellular damage and repair during cholestasis. Ann Hepatol 2021; 26: 100530
  • 44 Francis H, Glaser S, Ueno Y. et al. cAMP stimulates the secretory and proliferative capacity of the rat intrahepatic biliary epithelium through changes in the PKA/Src/MEK/ERK1/2 pathway. J Hepatol 2004; 41 (04) 528-537
  • 45 Glaser S, Lam IP, Franchitto A. et al. Knockout of secretin receptor reduces large cholangiocyte hyperplasia in mice with extrahepatic cholestasis induced by bile duct ligation. Hepatology 2010; 52 (01) 204-214
  • 46 Dutta AK, Khimji AK, Kresge C. et al. Identification and functional characterization of TMEM16A, a Ca2+-activated Cl- channel activated by extracellular nucleotides, in biliary epithelium. J Biol Chem 2011; 286 (01) 766-776
  • 47 Woo K, Sathe M, Kresge C. et al. Adenosine triphosphate release and purinergic (P2) receptor-mediated secretion in small and large mouse cholangiocytes. Hepatology 2010; 52 (05) 1819-1828
  • 48 Lesage G, Glaser SS, Gubba S. et al. Regrowth of the rat biliary tree after 70% partial hepatectomy is coupled to increased secretin-induced ductal secretion. Gastroenterology 1996; 111 (06) 1633-1644
  • 49 Zhang N, Bai H, David KK. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 2010; 19 (01) 27-38
  • 50 Lazaridis KN, LaRusso NF. The cholangiopathies. Mayo Clin Proc 2015; 90 (06) 791-800
  • 51 Lazaridis KN, Strazzabosco M, Larusso NF. The cholangiopathies: disorders of biliary epithelia. Gastroenterology 2004; 127 (05) 1565-1577
  • 52 Salas-Silva S, Simoni-Nieves A, Lopez-Ramirez J. et al. Cholangiocyte death in ductopenic cholestatic cholangiopathies: mechanistic basis and emerging therapeutic strategies. Life Sci 2019; 218: 324-339
  • 53 Yang F, Gaudio E, Onori P, Wise C, Alpini G, Glaser SS. Mechanisms of biliary damage. J Cell Death 2010; 3: 13-21
  • 54 Alpini G, Glaser SS, Ueno Y. et al. Heterogeneity of the proliferative capacity of rat cholangiocytes after bile duct ligation. Am J Physiol 1998; 274 (04) G767-G775
  • 55 LeSage GD, Glaser SS, Marucci L. et al. Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver. Am J Physiol 1999; 276 (05) G1289-G1301
  • 56 Strazzabosco M, Fabris L. Development of the bile ducts: essentials for the clinical hepatologist. J Hepatol 2012; 56 (05) 1159-1170
  • 57 Nakanuma Y, Sasaki M, Harada K. Autophagy and senescence in fibrosing cholangiopathies. J Hepatol 2015; 62 (04) 934-945
  • 58 Trussoni CE, O'Hara SP, LaRusso NF. Cellular senescence in the cholangiopathies: a driver of immunopathology and a novel therapeutic target. Semin Immunopathol 2022; 44 (04) 527-544
  • 59 Kamimoto K, Kaneko K, Kok CY, Okada H, Miyajima A, Itoh T. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling. eLife 2016; 5 DOI: 10.7554/eLife.15034.
  • 60 Raven A, Lu WY, Man TY. et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 2017; 547 (7663): 350-354
  • 61 Michalopoulos GK, Khan Z. Liver stem cells: experimental findings and implications for human liver disease. Gastroenterology 2015; 149 (04) 876-882
  • 62 He J, Lu H, Zou Q, Luo L. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 2014; 146 (03) 789-800.e8
  • 63 Cantz T, Manns MP, Ott M. Stem cells in liver regeneration and therapy. Cell Tissue Res 2008; 331 (01) 271-282
  • 64 Francis H, Glaser S, Demorrow S. et al. Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP3/CaMK I/CREB pathway. Am J Physiol Cell Physiol 2008; 295 (02) C499-C513
  • 65 Pisarello MJ, Loarca L, Ivanics T, Morton L, LaRusso N. MicroRNAs in the cholangiopathies: pathogenesis, diagnosis, and treatment. J Clin Med 2015; 4 (09) 1688-1712
  • 66 Andrews TS, Atif J, Liu JC. et al. Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol Commun 2022; 6 (04) 821-840
  • 67 Onofrio FQ, Hirschfield GM, Gulamhusein AF. A practical review of primary biliary cholangitis for the gastroenterologist. Gastroenterol Hepatol (N Y) 2019; 15 (03) 145-154
  • 68 Tag CG, Sauer-Lehnen S, Weiskirchen S. et al. Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis. J Vis Exp 2015; (96). DOI: 10.3791/52438.
  • 69 McDaniel K, Meng F, Wu N. et al. Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice. Hepatology 2017; 65 (02) 544-559
  • 70 Manco R, Clerbaux LA, Verhulst S. et al. Reactive cholangiocytes differentiate into proliferative hepatocytes with efficient DNA repair in mice with chronic liver injury. J Hepatol 2019; 70 (06) 1180-1191
  • 71 LeSagE G, Alvaro D, Benedetti A. et al. Cholinergic system modulates growth, apoptosis, and secretion of cholangiocytes from bile duct-ligated rats. Gastroenterology 1999; 117 (01) 191-199
  • 72 Glaser S, Alvaro D, Francis H. et al. Adrenergic receptor agonists prevent bile duct injury induced by adrenergic denervation by increased cAMP levels and activation of Akt. Am J Physiol Gastrointest Liver Physiol 2006; 290 (04) G813-G826
  • 73 Lesage G, Glaser S, Ueno Y. et al. Regression of cholangiocyte proliferation after cessation of ANIT feeding is coupled with increased apoptosis. Am J Physiol Gastrointest Liver Physiol 2001; 281 (01) G182-G190
  • 74 Renzi A, DeMorrow S, Onori P. et al. Modulation of the biliary expression of arylalkylamine N-acetyltransferase alters the autocrine proliferative responses of cholangiocytes in rats. Hepatology 2013; 57 (03) 1130-1141
  • 75 DiGregorio N, Sharma S. Physiology, Secretin. StatPearls; 2022
  • 76 Sato K, Meng F, Venter J, Giang T, Glaser S, Alpini G. The role of the secretin/secretin receptor axis in inflammatory cholangiocyte communication via extracellular vesicles. Sci Rep 2017; 7 (01) 11183
  • 77 Duffy AM, Bouchier-Hayes DJ, Harmey JH. Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: autocrine signalling by VEGF. Madame Curie Bioscience Database [Internet]. Landes Bioscience; 2000–2013. Accessed October 20, 2022 at: https://www.ncbi.nlm.nih.gov/books/NBK6482/
  • 78 Gaudio E, Barbaro B, Alvaro D. et al. Vascular endothelial growth factor stimulates rat cholangiocyte proliferation via an autocrine mechanism. Gastroenterology 2006; 130 (04) 1270-1282
  • 79 Mancinelli R, Onori P, Gaudio E. et al. Follicle-stimulating hormone increases cholangiocyte proliferation by an autocrine mechanism via cAMP-dependent phosphorylation of ERK1/2 and Elk-1. Am J Physiol Gastrointest Liver Physiol 2009; 297 (01) G11-G26
  • 80 Orlowski M, Sarao MS. Physiology, Follicle Stimulating Hormone. Treasure Island, FL: StatPearls Publishing; 2022
  • 81 Onori P, Gaudio E, Franchitto A, Alpini G, Francis H. Histamine regulation of hyperplastic and neoplastic cell growth in cholangiocytes. World J Gastrointest Pathophysiol 2010; 1 (02) 38-49
  • 82 Bone & Soft Tissue. Laboratory Investigation 2011; 91 (01) 8-24 DOI: 10.1038/labinvest.2011.15.
  • 83 Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 2013; 19 (03) 197-209
  • 84 Alvaro D, Mancino MG, Onori P. et al. Estrogens and the pathophysiology of the biliary tree. World J Gastroenterol 2006; 12 (22) 3537-3545
  • 85 Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med 2012; 10: 239
  • 86 Gigliozzi A, Alpini G, Baroni GS. et al. Nerve growth factor modulates the proliferative capacity of the intrahepatic biliary epithelium in experimental cholestasis. Gastroenterology 2004; 127 (04) 1198-1209
  • 87 Mawe GM, Hoffman JM. Serotonin signalling in the gut – functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 2013; 10 (08) 473-486
  • 88 Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med 2009; 60: 355-366
  • 89 Marzioni M, Glaser S, Francis H. et al. Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology 2005; 128 (01) 121-137
  • 90 Renzi A, Glaser S, Demorrow S. et al. Melatonin inhibits cholangiocyte hyperplasia in cholestatic rats by interaction with MT1 but not MT2 melatonin receptors. Am J Physiol Gastrointest Liver Physiol 2011; 301 (04) G634-G643
  • 91 de Jong IEM, van den Heuvel MC, Wells RG, Porte RJ. The heterogeneity of the biliary tree. J Hepatol 2021; 75 (05) 1236-1238
  • 92 Assis DN, Debray D. Gallbladder and bile duct disease in cystic fibrosis. J Cyst Fibros 2017; 16 (Suppl. 02) S62-S69
  • 93 Cnossen WR, Drenth JP. Polycystic liver disease: an overview of pathogenesis, clinical manifestations and management. Orphanet J Rare Dis 2014; 9: 69
  • 94 Washington MK. Autoimmune liver disease: overlap and outliers. Mod Pathol 2007; 20 (Suppl. 01) S15-S30
  • 95 Strasser SI, Shulman HM, Flowers ME. et al. Chronic graft-versus-host disease of the liver: presentation as an acute hepatitis. Hepatology 2000; 32 (06) 1265-1271
  • 96 Buxbaum J, Papademetriou M, Klipfel N, Selby R, Fong TL, Sharma O. Biliary sarcoidosis: early diagnosis minimizes the need for surgery. Am J Respir Crit Care Med 2013; 187 (05) 556-559
  • 97 Douglass KM, Willner IR, Glenn DJ, Jones RM. Idiopathic adulthood ductopenia causing cirrhosis. ACG Case Rep J 2020; 7 (03) e00349
  • 98 Banales JM, Marin JJG, Lamarca A. et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17 (09) 557-588