CC BY 4.0 · Journal of Health and Allied Sciences NU 2023; 13(04): 445-452
DOI: 10.1055/s-0042-1759711
Review Article

Applications of Gene Therapy in Dentistry: A Review Article

Karthika Nair
1   Department of Periodontology, A B Shetty Memorial Institute of Dental Sciences, NITTE Deemed to be University, Mangaluru, Karnataka, India
,
Amitha Ramesh Bhat
1   Department of Periodontology, A B Shetty Memorial Institute of Dental Sciences, NITTE Deemed to be University, Mangaluru, Karnataka, India
› Author Affiliations

Abstract

Gene therapy promises to possess a good prospect in bridging the gap between dental applications and medicine. The dynamic therapeutic modalities of gene therapy have been advancing rapidly. Conventional approaches are being revamped to be more comprehensive and pre-emptive, which could do away with the need for surgery and medicine altogether. The complementary base sequences known as genes convey the instructions required to manufacture proteins. The oral cavity is one of the most accessible locations for the therapeutic intervention of gene therapy for several oral tissues. In 1990, the first significant trial of gene therapy was overseen to alleviate adenosine deaminase deficiency. The notion of genetic engineering has become increasingly appealing as a reflection of its benefits over conventional treatment modalities. An example of how this technology may alter dentistry is the implementation of gene therapy for dental and oral ailments. The objective of this article is to examine the effects of gene therapy on the field of dentistry, periodontology and implantology. Furthermore, the therapeutic factors of disease therapy, minimal invasion, and appropriate outcome have indeed been taken into consideration.



Publication History

Article published online:
20 January 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Misra S. Human gene therapy: a brief overview of the genetic revolution. J Assoc Physicians India 2013; 61 (02) 127-133
  • 2 Wood KJ, Fry J. Gene therapy: potential applications in clinical transplantation. Expert Rev Mol Med 1999; 1999: 1-20
  • 3 Haffajee AD, Socransky SS. Microbial etiological agents of destructive periodontal diseases. Periodontol 2000 1994; 5: 78-111
  • 4 Page RC, Kornman KS. The pathogenesis of human periodontitis: an introduction. Periodontol 2000 1997; 14: 9-11
  • 5 Hill AB. The environment and disease: association or causation?. Proc R Soc Med 1965; 58: 295-300
  • 6 Prabhakar AR, Paul JM, Basappa N. Gene therapy and its implications in dentistry. Int J Clin Pediatr Dent 2011; 4 (02) 85-92
  • 7 Karthikeyan BV, Pradeep AR. Gene therapy in periodontics: a review and future implications. J Contemp Dent Pract 2006; 7 (03) 83-91
  • 8 Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene 2013; 525 (02) 162-169
  • 9 Romano G, Pacilio C, Giordano A. Gene transfer technology in therapy: current applications and future goals. Stem Cells 1999; 17 (04) 191-202
  • 10 Baum BJ, O'Connell BC. The impact of gene therapy on dentistry. J Am Dent Assoc 1995; 126 (02) 179-189
  • 11 Baum BJ, Zheng C, Cotrim AP. et al. Transfer of the AQP1 cDNA for the correction of radiation-induced salivary hypofunction. Biochim Biophys Acta 2006; 1758 (08) 1071-1077
  • 12 Kok MR, Yamano S, Lodde BM. et al. Local adeno-associated virus-mediated interleukin 10 gene transfer has disease-modifying effects in a murine model of Sjögren's syndrome. Hum Gene Ther 2003; 14 (17) 1605-1618
  • 13 Voutetakis A, Bossis I, Kok MR. et al. Salivary glands as a potential gene transfer target for gene therapeutics of some monogenetic endocrine disorders. J Endocrinol 2005; 185 (03) 363-372
  • 14 Wang J, Cawley NX, Voutetakis A. et al. Partial redirection of transgenic human growth hormone secretion from rat salivary glands. Hum Gene Ther 2005; 16 (05) 571-583
  • 15 He X, Goldsmith CM, Marmary Y. et al. Systemic action of human growth hormone following adenovirus-mediated gene transfer to rat submandibular glands. Gene Ther 1998; 5 (04) 537-541
  • 16 Goldfine ID, German MS, Tseng HC. et al. The endocrine secretion of human insulin and growth hormone by exocrine glands of the gastrointestinal tract. Nat Biotechnol 1997; 15 (13) 1378-1382
  • 17 O'Connell BC, Xu T, Walsh TJ. et al. Transfer of a gene encoding the anticandidal protein histatin 3 to salivary glands. Hum Gene Ther 1996; 7 (18) 2255-2261
  • 18 Delporte C, O'Connell BC, He X. et al. Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci U S A 1997; 94 (07) 3268-3273
  • 19 Delporte C, Redman RS, Baum BJ. Relationship between the cellular distribution of the alpha(v)beta3/5 integrins and adenoviral infection in salivary glands. Lab Invest 1997; 77 (02) 167-173
  • 20 Lillibridge CD, O'Connell BC. In human salivary gland cells, overexpression of E2F1 overcomes an interferon-γ- and tumor necrosis factor-α-induced growth arrest but does not result in complete mitosis. J Cell Physiol 1997; 172 (03) 343-350
  • 21 Xiong W, Chao J, Chao L. Expression and localization of human kallistatin in rat submandibular gland after intracapsular gene injection. Biochem Biophys Res Commun 1997; 231 (02) 494-498
  • 22 Fleck M, Zhang HG, Kern ER, Hsu HC, Muller-Ladner U, Mountz JD. Treatment of chronic sialadenitis in murine model of Sjogren's syndrome by local FasI gene transfer. Arthritis Rheum 2001; 44: 964-973
  • 23 Barka T, Van der Noen HM. Retrovirus-mediated gene transfer into salivary glands in vivo. Hum Gene Ther 1996; 7 (05) 613-618
  • 24 Kagami H, Atkinson JC, Michalek SM. et al. Repetitive adenovirus administration to the parotid gland: role of immunological barriers and induction of oral tolerance. Hum Gene Ther 1998; 9 (03) 305-313
  • 25 Wang S, Baum BJ, Kagami H, Zheng C, O'Connell BC, Atkinson JC. Effect of clodronate on macrophage depletion and adenoviral?mediated transgene expression in salivary glands. Journal of oral pathology & medicine 1996; Apr; 28 (04) 145-151
  • 26 Firestein GS. VIP: a very important protein in arthritis. Nat Med 2001; 7 (05) 537-538
  • 27 Lodde BM, Mineshiba F, Wang J. et al. Effect of human vasoactive intestinal peptide gene transfer in a murine model of Sjogren's syndrome. Ann Rheum Dis 2006; 65 (02) 195-200
  • 28 Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon's point of view. J Cell Mol Med 2006; 10 (01) 7-19
  • 29 Zafar MS, Khurshid Z, Almas K. Oral tissue engineering progress and challenges. Tissue Engineering and Regenerative Medicine 2015; Dec; 12 (06) 387-397
  • 30 Franceschi RT, Wang D, Krebsbach PH, Rutherford RB. Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J Cell Biochem 2000; 78 (03) 476-486
  • 31 Krebsbach PH, Gu K, Franceschi RT, Rutherford RB. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther 2000; 11 (08) 1201-1210
  • 32 Chisholm E, Bapat U, Chisholm C, Alusi G, Vassaux G. Gene therapy in head and neck cancer: a review. Postgrad Med J 2007; 83 (986) 731-737
  • 33 Luo J, Sun MH, Kang Q. et al. Gene therapy for bone regeneration. Curr Gene Ther 2005; 5 (02) 167-179
  • 34 Kawabata M, Imamura T, Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 1998; 9 (01) 49-61
  • 35 Kirker-Head CA. Potential applications and delivery strategies for bone morphogenetic proteins. Adv Drug Deliv Rev 2000; 43 (01) 65-92
  • 36 Jin Q, Anusaksathien O, Webb SA, Printz MA, Giannobile WV. Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors. Mol Ther 2004; 9 (04) 519-526
  • 37 Bouleftour W, Juignet L, Bouet G. et al. The role of the SIBLING, Bone Sialoprotein in skeletal biology - contribution of mouse experimental genetics. Matrix Biol 2016; 52-54: 60-77
  • 38 Heise CC, Williams AM, Xue S, Propst M, Kirn DH. Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy. Cancer Res 1999; 59 (11) 2623-2628
  • 39 Nemunaitis J, Khuri F, Ganly I. et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol 2001; 19 (02) 289-298
  • 40 Kirn D, Hermiston T, McCormick F. ONYX-015: clinical data are encouraging. Nat Med 1998; 4 (12) 1341-1342
  • 41 Khuri FR, Nemunaitis J, Ganly I. et al. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6 (08) 879-885
  • 42 Matthews T, Boehme R. Antiviral activity and mechanism of action of ganciclovir. Rev Infect Dis 1988; 10 (3, suppl 3): S490-S494
  • 43 Lipton JA, Ship JA, Larach-Robinson D. Estimated prevalence and distribution of reported orofacial pain in the United States. J Am Dent Assoc 1993; 124 (10) 115-121
  • 44 Arendt-Nielsen L, Graven-Nielsen T, Sessle BJ. Mechanisms underlying extraterritorial and widespread sensitization: from animal to chronic pain. In: Graven-Nielsen T, Arendt-Nielsen L, eds. Musculoskeletal Pain: Basic Mechanisms & Implications. Washington, DC: Wolters Kluwer Health; 2015: 417-436
  • 45 Macfarlane TV. Epidemiology of orofacial pain. In: Sessle BJ, ed. Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms. Washington, DC: IASP Press; 2014: 33-52
  • 46 Svensson P, Baad-Hansen L, Drangsholt M, Jaaskelainen S. Neurosensory testing for assessment, diagnosis, and prediction of orofacial pain. In: Sessle BJ, ed. Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms. Washington, DC: IASP Press; 2014: 143-164
  • 47 Slade GD, Greenspan JD, Fillingim RB, Maixner W, Sharma S, Ohrbach R. Overlap of five chronic pain conditions: temporomandibular disorders, headache, back pain, irritable bowel syndrome, and fibromyalgia. J Oral Facial Pain Headache 2020; 34: s15-s28
  • 48 Sessle BJ, Baad-Hansen L, Exposto F, Svensson P. Orofacial pain. In: Lynch M, Craig K, Peng P, eds. Clinical Pain Management: A Practical Guide. 2nd ed. New York, NY: Wiley-Blackwell; 2021; in press
  • 49 Lynch ME, Campbell F, Clark AJ. et al. A systematic review of the effect of waiting for treatment for chronic pain. Pain 2008; 136 (1-2): 97-116
  • 50 Chapman CR, Vierck CJ. The transition of acute postoperative pain to chronic pain: an integrative overview of research on mechanisms. J Pain 2017; 18 (04) 359.e1-359.e38
  • 51 Pak DJ, Yong RJ, Kaye AD, Urman RD. Chronification of pain: mechanisms, current understanding, and clinical implications. Curr Pain Headache Rep 2018; 22 (02) 9
  • 52 Glare P, Aubrey KR, Myles PS. Transition from acute to chronic pain after surgery. Lancet 2019; 393 (10180): 1537-1546
  • 53 Khan J, Zusman T, Wang Q, Eliav E. Acute and chronic pain in orofacial trauma patients. Dent Traumatol 2019; 35 (06) 348-357
  • 54 Romero-Reyes M, Uyanik JM. Orofacial pain management: current perspectives. J Pain Res 2014; 7: 99-115
  • 55 Camu F, Vanlersberghe C. Pharmacology of systemic analgesics. Baillieres Best Pract Res Clin Anaesthesiol 2002; 16 (04) 475-488
  • 56 Long H, Wang Y, Jian F, Liao LN, Yang X, Lai WL. Current advances in orthodontic pain. Int J Oral Sci 2016; 8 (02) 67-75
  • 57 Gazal G, Fareed WM, Zafar MS, Al-Samadani KH. Pain and anxiety management for pediatric dental procedures using various combinations of sedative drugs: a review. Saudi Pharm J 2016; 24 (04) 379-385
  • 58 Jain KK. Gene therapy for pain. Expert Opin Biol Ther 2008; 8 (12) 1855-1866
  • 59 Ma F, Wang C, Yoder WE. et al. Efficacy of herpes simplex virus vector encoding the human preproenkephalin gene for treatment of facial pain in mice. J Oral Facial Pain Headache 2016; 30 (01) 42-50
  • 60 Tzabazis AZ, Klukinov M, Feliciano DP, Wilson SP, Yeomans DC. Gene therapy for trigeminal pain in mice. Gene Ther 2014; 21 (04) 422-426
  • 61 Kuboki T, Nakanishi T, Kanyama M. et al. Direct adenovirus-mediated gene delivery to the temporomandibular joint in guinea-pigs. Arch Oral Biol 1999; 44 (09) 701-709
  • 62 Nakashima M, Iohara K, Ishikawa M. et al. Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11). Hum Gene Ther 2004; 15 (11) 1045-1053
  • 63 Alliot-Licht B, Bluteau G, Magne D. et al. Dexamethasone stimulates differentiation of odontoblast-like cells in human dental pulp cultures. Cell Tissue Res 2005; 321 (03) 391-400
  • 64 Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 2004; 83 (08) 590-595
  • 65 Nakashima M, Iohara K, Zheng L. Gene therapy for dentin regeneration with bone morphogenetic proteins. Curr Gene Ther 2006; 6 (05) 551-560
  • 66 Nosrat IV, Widenfalk J, Olson L, Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 2001; 238 (01) 120-132
  • 67 Gandia C, Armiñan A, García-Verdugo JM. et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 2008; 26 (03) 638-645
  • 68 Graziano A, d'Aquino R, Laino G. et al. Human CD34+ stem cells produce bone nodules in vivo. Cell Prolif 2008; 41 (01) 1-11
  • 69 Graziano A, d'Aquino R, Laino G, Papaccio G. Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 2008; 4 (01) 21-26
  • 70 Kerkis I, Ambrosio CE, Kerkis A. et al. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: local or systemic?. J Transl Med 2008; 6: 35
  • 71 Onyekwelu O, Seppala M, Zoupa M, Cobourne MT. Tooth development: 2. Regenerating teeth in the laboratory. Dent Update 2007; 34 (01) 20-22 , 25–26, 29
  • 72 Cordeiro MM, Dong Z, Kaneko T. et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 2008; 34 (08) 962-969
  • 73 Nedel F, André DdeA, de Oliveira IO. et al. Stem cells: therapeutic potential in dentistry. J Contemp Dent Pract 2009; 10 (04) 90-96
  • 74 d'Aquino R, De Rosa A, Lanza V. et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 2009; 18: 75-83
  • 75 Wilcko MT, Wilcko WM, Pulver JJ, Bissada NF, Bouquot JE. Accelerated osteogenic orthodontics technique: a 1-stage surgically facilitated rapid orthodontic technique with alveolar augmentation. J Oral Maxillofac Surg 2009; 67 (10) 2149-2159
  • 76 Iino S, Sakoda S, Ito G, Nishimori T, Ikeda T, Miyawaki S. Acceleration of orthodontic tooth movement by alveolar corticotomy in the dog. Am J Orthod Dentofacial Orthop 2007; 131 (04) 448.e1-448.e8
  • 77 Lacey DL, Timms E, Tan HL. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93 (02) 165-176
  • 78 Frost HM. The regional acceleratory phenomenon: a review. Henry Ford Hospital Medical Journal 1983; 31 (01) 3-9
  • 79 Burstone CJ. The biophysics of bone remodelling during orthodontics-optimal force considerations. In: Norton LA, Burstone CJ, eds. The Biology of Tooth Movement. Boca Raton: CRC Press; 1989: 321-334
  • 80 Baum BJ, Kok M, Tran SD, Yamano S. The impact of gene therapy on dentistry: a revisiting after six years. J Am Dent Assoc 2002; 133 (01) 35-44
  • 81 Katz J, Black KP, Michalek SM. Host responses to recombinant hemagglutinin B of Porphyromonas gingivalis in an experimental rat model. Infect Immun 1999; 67 (09) 4352-4359
  • 82 Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O'Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003; 426 (6964): 306-310
  • 83 Tsuchiya S, Chiba M, Kishimoto K, Nakamura H, Mitani H. Gene transfer into periodontal tissue by in vivo electroporation. InJOURNAL OF DENTAL RESEARCH 2002 Mar 1 (Vol. 81, pp. A452-A452). 1619 DUKE ST, ALEXANDRIA, VA 22314-3406 USA: INT AMER ASSOC DENTAL RESEARCHI ADR/AADR
  • 84 Schreiner HC, Sinatra K, Kaplan JB. et al. Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model. Proc Natl Acad Sci U S A 2003; 100 (12) 7295-7300
  • 85 Cathy AJ. Teeth-We're going to grow them back. 2005
  • 86 Becker W, Lynch SE, Lekholm U. et al. A comparison of ePTFE membranes alone or in combination with platelet-derived growth factors and insulin-like growth factor-I or demineralized freeze-dried bone in promoting bone formation around immediate extraction socket implants. J Periodontol 1992; 63 (11) 929-940
  • 87 Rutherford RB, Niekrash CE, Kennedy JE, Charette MF. Platelet-derived and insulin-like growth factors stimulate regeneration of periodontal attachment in monkeys. J Periodontal Res 1992; 27 (4 Pt 1): 285-290
  • 88 Giannobile WV, Finkelman RD, Lynch SE. Comparison of canine and non-human primate animal models for periodontal regenerative therapy: results following a single administration of PDGF/IGF-I. J Periodontol 1994; 65 (12) 1158-1168
  • 89 Park JB, Matsuura M, Han KY. et al. Periodontal regeneration in class III furcation defects of beagle dogs using guided tissue regenerative therapy with platelet-derived growth factor. J Periodontol 1995; 66 (06) 462-477
  • 90 Giannobile WV, Hernandez RA, Finkelman RD. et al. Comparative effects of platelet-derived growth factor-BB and insulin-like growth factor-I, individually and in combination, on periodontal regeneration in Macaca fascicularis . J Periodontal Res 1996; 31 (05) 301-312
  • 91 Howell TH, Fiorellini JP, Paquette DW, Offenbacher S, Giannobile WV, Lynch SE. A phase I/II clinical trial to evaluate a combination of recombinant human platelet-derived growth factor-BB and recombinant human insulin-like growth factor-I in patients with periodontal disease. J Periodontol 1997; 68 (12) 1186-1193
  • 92 Nevins M, Giannobile WV, McGuire MK. et al. Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J Periodontol 2005; 76 (12) 2205-2215
  • 93 Ramseier CA, Abramson ZR, Jin Q, Giannobile WV. Gene therapeutics for periodontal regenerative medicine. Dent Clin North Am 2006; 50 (02) 245-263 , ix
  • 94 Dunn CA, Jin Q, Taba Jr M, Franceschi RT, Bruce Rutherford R, Giannobile WV. BMP gene delivery for alveolar bone engineering at dental implant defects. Mol Ther 2005; 11 (02) 294-299
  • 95 Giannobile WV, Lee CS, Tomala MP, Tejeda KM, Zhu Z. Platelet-derived growth factor (PDGF) gene delivery for application in periodontal tissue engineering. J Periodontol 2001; 72 (06) 815-823
  • 96 Zhu Z, Lee CS, Tejeda KM, Giannobile WV. Gene transfer and expression of platelet-derived growth factors modulate periodontal cellular activity. J Dent Res 2001; 80 (03) 892-897
  • 97 Yi M, Jiao D, Qin S, Chu Q, Wu K, Li A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol Cancer 2019; 18 (01) 60
  • 98 Cyphert EL, von Recum HA, Yamato M, Nakayama M. Surface sulfonamide modification of poly(N-isopropylacrylamide)-based block copolymer micelles to alter pH and temperature responsive properties for controlled intracellular uptake. J Biomed Mater Res A 2018; 106 (06) 1552-1560