Semin Musculoskelet Radiol 2022; 26(06): 656-669
DOI: 10.1055/s-0042-1760217
Review Article

Talar Dome Osteochondral Lesions: Pre- and Postoperative Imaging

1   Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
,
Samuel K.K. Ling
2   Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
,
Thomas Tischer
3   Department of Orthopaedic Surgery, University Medical Centre Rostock, Rostock, Germany
,
Marc-André Weber
4   Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock Germany
› Author Affiliations

Abstract

We suggest a similar approach to evaluating osteochondral lesions of the talar dome both pre- and postoperatively. This review addresses the etiology, natural history, and treatment of talar dome osteochondral lesions with an emphasis on imaging appearances. High-resolution magnetic resonance imaging, ideally combining a small field-of-view surface coil with ankle traction, optimizes visibility of most of the clinically relevant features both pre- and postoperatively.



Publication History

Article published online:
15 February 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Sonnow L, Pacha TO, Richter M. et al. Anatomic risk factors for the occurrence of medial talar osteochondral lesions: a case-control study. Skeletal Radiol 2022; 51 (09) 1843-1851
  • 2 Guimarães JB, da Cruz IAN, Nery C. et al. Osteochondral lesions of the talar dome: an up-to-date approach to multimodality imaging and surgical techniques. Skeletal Radiol 2021; 50 (11) 2151-2168
  • 3 Sugimoto K, Takakura Y, Tohno Y, Kumai T, Kawate K, Kadono K. Cartilage thickness of the talar dome. Arthroscopy 2005; 21 (04) 401-404
  • 4 Shepherd DE, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis 1999; 58 (01) 27-34
  • 5 van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJ. Osteochondral defects in the ankle: why painful?. Knee Surg Sports Traumatol Arthrosc 2010; 18 (05) 570-580
  • 6 Ramsey PL, Hamilton W. Changes in tibiotalar area of contact caused by lateral talar shift. J Bone Joint Surg Am 1976; 58 (03) 356-357
  • 7 Procter P, Paul JP. Ankle joint biomechanics. J Biomech 1982; 15 (09) 627-634
  • 8 Lambert KL. The weight-bearing function of the fibula. A strain gauge study. J Bone Joint Surg Am 1971; 53 (03) 507-513
  • 9 van Diepen PR, Dahmen J, Altink JN, Stufkens SAS, Kerkhoffs GMMJ. Location distribution of 2,087 osteochondral lesions of the talus. Cartilage 2021; 13 (1_suppl): 1344S-1353S
  • 10 LiMarzi GM, Scherer KF, Richardson ML. et al. CT and MR imaging of the postoperative ankle and foot. Radiographics 2016; 36 (06) 1828-1848
  • 11 Flick AB, Gould N. Osteochondritis dissecans of the talus (transchondral fractures of the talus): review of the literature and new surgical approach for medial dome lesions. Foot Ankle 1985; 5 (04) 165-185
  • 12 Tol JL, Struijs PA, Bossuyt PM, Verhagen RA, van Dijk CN. Treatment strategies in osteochondral defects of the talar dome: a systematic review. Foot Ankle Int 2000; 21 (02) 119-126
  • 13 Roemer FW, Jomaah N, Niu J. et al. Ligamentous injuries and the risk of associated tissue damage in acute ankle sprains in athletes: a cross-sectional MRI study. Am J Sports Med 2014; 42 (07) 1549-1557
  • 14 Kraeutler MJ, Kaenkumchorn T, Pascual-Garrido C, Wimmer MA, Chubinskaya S. Peculiarities in ankle cartilage. Cartilage 2017; 8 (01) 12-18
  • 15 Lomax A, Miller RJ, Fogg QA, Jane Madeley N, Senthil Kumar C. Quantitative assessment of the subchondral vascularity of the talar dome: a cadaveric study. Foot Ankle Surg 2014; 20 (01) 57-60
  • 16 Fernández Á, Poggio D, Llusá M, Álvarez C, Cufí Prat M. Graphic representation of intraosseous and extraosseous talus blood supply. Illustrated anatomy. Rev Esp Cir Ortop Traumatol 2022; 66 (05) 341-347
  • 17 Cheng KY, Fuangfa P, Shirazian H, Resnick D, Smitaman E. Osteochondritis dissecans of the talar dome in patients with tarsal coalition. Skeletal Radiol 2022; 51 (01) 191-200
  • 18 Wiewiorski M, Pagenstert G, Rasch H, Jacob AL, Valderrabano V. Pain in osteochondral lesions. Foot Ankle Spec 2011; 4 (02) 92-99
  • 19 van Bergen CJ, Gerards RM, Opdam KT, Terra MP, Kerkhoffs GM. Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities. World J Orthop 2015; 6 (11) 944-953
  • 20 Verhagen RA, Maas M, Dijkgraaf MG, Tol JL, Krips R, van Dijk CN. Prospective study on diagnostic strategies in osteochondral lesions of the talus. Is MRI superior to helical CT?. J Bone Joint Surg Br 2005; 87 (01) 41-46
  • 21 Kirschke JS, Braun S, Baum T. et al. Diagnostic value of CT arthrography for evaluation of osteochondral lesions at the ankle. BioMed Res Int 2016; 2016: 3594253
  • 22 Weber MA, Wünnemann F, Jungmann PM, Kuni B, Rehnitz C. Modern cartilage imaging of the ankle. Röfo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 2017; 189 (10) 945-956
  • 23 Schmid MR, Pfirrmann CW, Hodler J, Vienne P, Zanetti M. Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skeletal Radiol 2003; 32 (05) 259-265
  • 24 Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW. Diagnostic performance of dual-energy CT for the detection of bone marrow oedema: a systematic review and meta-analysis. Eur Radiol 2018; 28 (10) 4182-4194
  • 25 Sandhu R, Aslan M, Obuchowski N, Primak A, Karim W, Subhas N. Dual-energy CT arthrography: a feasibility study. Skeletal Radiol 2021; 50 (04) 693-703
  • 26 Hassink G, Testa EA, Leumann A, Hügle T, Rasch H, Hirschmann MT. Intra- and inter-observer reliability of a new standardized diagnostic method using SPECT/CT in patients with osteochondral lesions of the ankle joint. BMC Med Imaging 2016; 16 (01) 67
  • 27 Tamam C, Tamam MO, Yildirim D, Mulazimoglu M. Diagnostic value of single-photon emission computed tomography combined with computed tomography in relation to MRI on osteochondral lesions of the talus. Nucl Med Commun 2015; 36 (08) 808-814
  • 28 Griffith JF, Lau DT, Yeung DK, Wong MW. High-resolution MR imaging of talar osteochondral lesions with new classification. Skeletal Radiol 2012; 41 (04) 387-399
  • 29 Griffith JF, Wang YX, Lodge SJ, Wong MW, Ahuja AT. Small field-of-view surface coil MR imaging of talar osteochondral lesions. Foot Ankle Int 2010; 31 (06) 517-522
  • 30 Sun Y, Hao YF, Hu D, Liu KF. Magnetic resonance imaging of osteochondral lesions of the talus: comparison between small FOV surface coil with BLADE and boot-shape coil without BLADE. Iran J Radiol 2019; 16 (04) e80319
  • 31 Lee RKL, Griffith JF, Law EKC, Ng AWH, Yeung DKW. Ankle traction during MRI of talar dome osteochondral lesions. AJR Am J Roentgenol 2017; 209 (04) 874-882
  • 32 Antonio GE, Griffith JF, Yeung DK. Small-field-of-view MRI of the knee and ankle. AJR Am J Roentgenol 2004; 183 (01) 24-28
  • 33 Umans HR, Cerezal L. Anterior ankle impingement syndromes. Semin Musculoskelet Radiol 2008; 12 (02) 146-153
  • 34 Schreiner MM, Mlynarik V, Zbýň Š. et al. New technology in imaging cartilage of the ankle. Cartilage 2017; 8 (01) 31-41
  • 35 Link TM, Mischung J, Wörtler K, Burkart A, Rummeny EJ, Imhoff AB. Normal and pathological MR findings in osteochondral autografts with longitudinal follow-up. Eur Radiol 2006; 16 (01) 88-96
  • 36 Jans LBO, Chen M, Elewaut D. et al. MRI-based synthetic CT in the detection of structural lesions in patients with suspected sacroiliitis: comparison with MRI. Radiology 2021; 298 (02) 343-349
  • 37 Bauer M, Jonsson K, Lindén B. Osteochondritis dissecans of the ankle. A 20-year follow-up study. J Bone Joint Surg Br 1987; 69 (01) 93-96
  • 38 Pettine KA, Morrey BF. Osteochondral fractures of the talus. A long-term follow-up. J Bone Joint Surg Br 1987; 69 (01) 89-92
  • 39 Elias I, Jung JW, Raikin SM, Schweitzer MW, Carrino JA, Morrison WB. Osteochondral lesions of the talus: change in MRI findings over time in talar lesions without operative intervention and implications for staging systems. Foot Ankle Int 2006; 27 (03) 157-166
  • 40 Zengerink M, Szerb I, Hangody L, Dopirak RM, Ferkel RD, van Dijk CN. Current concepts: treatment of osteochondral ankle defects. Foot Ankle Clin 2006; 11 (02) 331-359 , vi
  • 41 Gianakos AL, Yasui Y, Hannon CP, Kennedy JG. Current management of talar osteochondral lesions. World J Orthop 2017; 8 (01) 12-20
  • 42 Klammer G, Maquieira GJ, Spahn S, Vigfusson V, Zanetti M, Espinosa N. Natural history of nonoperatively treated osteochondral lesions of the talus. Foot Ankle Int 2015; 36 (01) 24-31
  • 43 Rungprai C, Tennant JN, Gentry RD, Phisitkul P. Management of osteochondral lesions of the talar dome. Open Orthop J 2017; 11 (11) 743-761
  • 44 Zengerink M, Struijs PA, Tol JL, van Dijk CN. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 2010; 18 (02) 238-246
  • 45 Choi WJ, Choi GW, Kim JS, Lee JW. Prognostic significance of the containment and location of osteochondral lesions of the talus: independent adverse outcomes associated with uncontained lesions of the talar shoulder. Am J Sports Med 2013; 41 (01) 126-133
  • 46 Lee KB, Park HW, Cho HJ, Seon JK. Comparison of arthroscopic microfracture for osteochondral lesions of the talus with and without subchondral cyst. Am J Sports Med 2015; 43 (08) 1951-1956
  • 47 Reilingh ML, Murawski CD, DiGiovanni CW. et al; International Consensus Group on Cartilage Repair of the Ankle. Fixation techniques: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int 2018; 39 (1_suppl): 23S-27S
  • 48 Nakasa T, Ikuta Y, Ota Y, Kanemitsu M, Adachi N. Clinical results of bioabsorbable pin fixation relative to the bone condition for osteochondral lesion of the talus. Foot Ankle Int 2019; 40 (12) 1388-1396
  • 49 Kuettner KE, Cole AA. Cartilage degeneration in different human joints. Osteoarthritis Cartilage 2005; 13 (02) 93-103
  • 50 Aurich M, Mwale F, Reiner A. et al. Collagen and proteoglycan turnover in focally damaged human ankle cartilage: evidence for a generalized response and active matrix remodeling across the entire joint surface. Arthritis Rheum 2006; 54 (01) 244-252
  • 51 Guelfi M, DiGiovanni CW, Calder J. et al. Large variation in management of talar osteochondral lesions among foot and ankle surgeons: results from an international survey. Knee Surg Sports Traumatol Arthrosc 2021; 29 (05) 1593-1603
  • 52 Han SH, Lee JW, Lee DY, Kang ES. Radiographic changes and clinical results of osteochondral defects of the talus with and without subchondral cysts. Foot Ankle Int 2006; 27 (12) 1109-1114
  • 53 van Bergen CJ, de Leeuw PA, van Dijk CN. Treatment of osteochondral defects of the talus. Rev Chir Orthop Reparatrice Appar Mot 2008; 94 (8, Suppl): 398-408
  • 54 Hannon CP, Bayer S, Murawski CD. et al; International Consensus Group on Cartilage Repair of the Ankle. Debridement, curettage, and bone marrow stimulation: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int 2018; 39 (1_suppl): 16S-22S
  • 55 van Bergen CJ, van Dijk CN. Re: Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med 2010; 38 (01) NP7 ; author reply NP7–NP9
  • 56 Steele J, Dekker T, Federer A, Liles J, Adams S, Easley M. Osteochondral lesions of the talus: current concepts in diagnosis and treatment. Foot & Ankle Orthopaedics. 2018; 3: 24 7301141877955
  • 57 Gudas R, Kalesinskas RJ, Kimtys V. et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 2005; 21 (09) 1066-1075
  • 58 Ramponi L, Yasui Y, Murawski CD. et al. Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review. Am J Sports Med 2017; 45 (07) 1698-1705
  • 59 Görmeli G, Karakaplan M, Görmeli CA, Sarıkaya B, Elmalı N, Ersoy Y. Clinical effects of platelet-rich plasma and hyaluronic acid as an additional therapy for talar osteochondral lesions treated with microfracture surgery: a prospective randomized clinical trial. Foot Ankle Int 2015; 36 (08) 891-900
  • 60 Furukawa T, Eyre DR, Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am 1980; 62 (01) 79-89
  • 61 Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 1999; (365) 149-162
  • 62 Giannini S, Buda R, Battaglia M. et al. One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med 2013; 41 (03) 511-518
  • 63 Murawski CD, Kennedy JG. Operative treatment of osteochondral lesions of the talus. J Bone Joint Surg Am 2013; 95 (11) 1045-1054
  • 64 Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy 2006; 22 (10) 1085-1092
  • 65 van Bergen CJ, Kox LS, Maas M, Sierevelt IN, Kerkhoffs GM, van Dijk CN. Arthroscopic treatment of osteochondral defects of the talus: outcomes at eight to twenty years of follow-up. J Bone Joint Surg Am 2013; 95 (06) 519-525
  • 66 Verhagen RA, Struijs PA, Bossuyt PM, van Dijk CN. Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin 2003; 8 (02) 233-242 , viii–ix
  • 67 O'Loughlin PF, Heyworth BE, Kennedy JG. Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med 2010; 38 (02) 392-404
  • 68 Ikuta Y, Nakasa T, Ota Y. et al. Retrograde drilling for osteochondral lesion of the talus in juvenile patients. Foot Ankle Orthop 2020; 5 (02) 24 73011420916139
  • 69 Minokawa S, Yoshimura I, Kanazawa K. et al. Retrograde drilling for osteochondral lesions of the talus in skeletally immature children. Foot Ankle Int 2020; 41 (07) 827-833
  • 70 Hurley ET, Murawski CD, Paul J. et al; International Consensus Group on Cartilage Repair of the Ankle. Osteochondral autograft: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int 2018; 39 (1_suppl): 28S-34S
  • 71 Shimozono Y, Coale M, Yasui Y, O'Halloran A, Deyer TW, Kennedy JG. Subchondral bone degradation after microfracture for osteochondral lesions of the talus: an MRI analysis. Am J Sports Med 2018; 46 (03) 642-648
  • 72 Kerkhoffs GMMJ, Altink JN, Stufkens SAS, Dahmen J. Talar OsteoPeriostic grafting from the Iliac Crest (TOPIC) for large medial talar osteochondral defects : operative technique. Oper Orthop Traumatol 2021; 33 (02) 160-169
  • 73 Baums MH, Schultz W, Kostuj T, Klinger HM. Cartilage repair techniques of the talus: an update. World J Orthop 2014; 5 (03) 171-179
  • 74 Rothrauff BB, Murawski CD, Angthong C. et al; International Consensus Group on Cartilage Repair of the Ankle. Scaffold-based therapies: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int 2018; 39 (1_suppl): 41S-47S
  • 75 Niemeyer P, Salzmann G, Schmal H, Mayr H, Südkamp NP. Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. Knee Surg Sports Traumatol Arthrosc 2012; 20 (09) 1696-1703
  • 76 Giannini S, Battaglia M, Buda R, Cavallo M, Ruffilli A, Vannini F. Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med 2009; 37 (Suppl 1): 112S-118S
  • 77 Bartlett W, Skinner JA, Gooding CR. et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 2005; 87 (05) 640-645
  • 78 D'Anchise R, Manta N, Prospero E, Bevilacqua C, Gigante A. Autologous implantation of chondrocytes on a solid collagen scaffold: clinical and histological outcomes after two years of follow-up. J Orthop Traumatol 2005; 6 (01) 36-43
  • 79 Aurich M, Bedi HS, Smith PJ. et al. Arthroscopic treatment of osteochondral lesions of the ankle with matrix-associated chondrocyte implantation: early clinical and magnetic resonance imaging results. Am J Sports Med 2011; 39 (02) 311-319
  • 80 Quirbach S, Trattnig S, Marlovits S. et al. Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle. Skeletal Radiol 2009; 38 (08) 751-760
  • 81 Waltenspül M, Zindel C, Altorfer FCS, Wirth S, Ackermann J. Correlation of postoperative imaging with MRI and clinical outcome after cartilage repair of the ankle: a systematic review and meta-analysis. Foot Ankle Orthop 2022; 7 (02) 24 730114221092021
  • 82 Choi YS, Potter HG, Chun TJ. MR imaging of cartilage repair in the knee and ankle. Radiographics 2008; 28 (04) 1043-1059
  • 83 Trattnig S, Welsch G, Domayer S, Apprich S. MR imaging of postoperative talar dome lesions. Semin Musculoskelet Radiol 2012; 16 (03) 177-184
  • 84 Favinger JL, Ha AS, Brage ME, Chew FS. Osteoarticular transplantation: recognizing expected postsurgical appearances and complications. Radiographics 2015; 35 (03) 780-792
  • 85 Fansa AM, Murawski CD, Imhauser CW, Nguyen JT, Kennedy JG. Autologous osteochondral transplantation of the talus partially restores contact mechanics of the ankle joint. Am J Sports Med 2011; 39 (11) 2457-2465
  • 86 Rehnitz C, Kuni B, Wuennemann F. et al. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping of talar osteochondral lesions: indicators of clinical outcomes. J Magn Reson Imaging 2017; 46 (06) 1601-1610
  • 87 Battaglia M, Vannini F, Buda R. et al. Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: mid-term T2-mapping MRI evaluation. Knee Surg Sports Traumatol Arthrosc 2011; 19 (08) 1376-1384