Horm Metab Res 2017; 49(05): 343-349
DOI: 10.1055/s-0043-102950
Endocrine Care
© Georg Thieme Verlag KG Stuttgart · New York

ANGPTL8 (Betatrophin) is Expressed in Visceral Adipose Tissue and Relates to Human Hepatic Steatosis in Two Independent Clinical Collectives

Christian von Loeffelholz
1   Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
2   Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany and Department of Anaesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
3   Department of Endocrinology, Diabetes, and Nutrition, Charité – Universitätsmedizin, Berlin, Germany
,
Andreas F. H. Pfeiffer
1   Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
3   Department of Endocrinology, Diabetes, and Nutrition, Charité – Universitätsmedizin, Berlin, Germany
7   German Center for Diabetes Research (DZD), Neuherberg, Germany
,
Johan F. Lock
4   Department of General-, Visceral-, Vascular- and Paediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
,
Steffi Lieske
5   Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital Carl Gustav Carus, Dresden, Germany
,
Stephanie Döcke
1   Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
,
Veronica Murahovschi
1   Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
,
Jennifer Kriebel
6   Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
7   German Center for Diabetes Research (DZD), Neuherberg, Germany
8   Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
,
Tonia de las Heras Gala
9   Research Unit of Diabetes Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
,
Harald Grallert
6   Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
7   German Center for Diabetes Research (DZD), Neuherberg, Germany
8   Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
,
Natalia Rudovich
1   Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
3   Department of Endocrinology, Diabetes, and Nutrition, Charité – Universitätsmedizin, Berlin, Germany
,
Martin Stockmann
10   Department of General, Visceral and Transplantation Surgery, Charité – Universitätsmedizin, Berlin, Germany
,
Joachim Spranger
3   Department of Endocrinology, Diabetes, and Nutrition, Charité – Universitätsmedizin, Berlin, Germany
,
Gerhard Jahreis
11   Institute of Nutrition, Friedrich Schiller University, Jena, Germany
,
Stefan R. Bornstein
5   Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital Carl Gustav Carus, Dresden, Germany
7   German Center for Diabetes Research (DZD), Neuherberg, Germany
,
George Lau
12   Humanity and Health GI and Liver Centre, University of Hong Kong, Hong Kong SAR, China
,
Aimin Xu
13   Department of Pharmacology & Pharmacy, University of Hong Kong, Hong Kong SAR, China
,
Jeanette Schulz-Menger
14   Department of Cardiology and Nephrology, Working Group on Cardiovascular Magnetic Resonance Imaging, Experimental and Clinical Research Center, Max-Delbrück-Centrum and Charité-Medical University Berlin and HELIOS Klinikum Berlin-Buch, Berlin, Germany
,
Louisa Exner
15   Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
,
Sven Haufe
15   Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
,
Jens Jordan
15   Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
18   Institute for Aerospace Medicine, German Aerospace Center, Cologne, Germany
,
Stefan Engeli*
15   Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
,
Andreas L. Birkenfeld*
5   Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital Carl Gustav Carus, Dresden, Germany
7   German Center for Diabetes Research (DZD), Neuherberg, Germany
16   Competence Center for Metabolic Vascular Medicine Prof. Hanefeld, GWT- TU Dresden, Dresden, Germany
17   Section of Diabetes and Nutritional Sciences, King’s College London, London, UK
› Author Affiliations
Further Information

Publication History

received 20 August 2016

accepted 24 January 2017

Publication Date:
28 March 2017 (online)

Abstract

Angiopoietin-like protein 8 (ANGPTL8)/betatrophin expression in visceral adipose tissue and associations with circulating fatty acid profile have not yet been investigated.

Forty subjects were included in a cross-sectional study, 57 in a dietary weight reduction intervention. Circulating Angiopoietin-like protein 8/betatrophin was measured in all subjects. Liver and adipose tissue were sampled and plasma fatty acids and tissue Angiopoietin-like protein 8/betatrophin expression were evaluated in the cross-sectional study. In the intervention study oral glucose testing and liver magnetic resonance scanning at baseline and after 6 months were performed. Angiopoietin-like protein 8/betatrophin mRNA was increased in visceral compared to subcutaneous adipose tissue (p<0.001). Circulating ANGPTL8/betatrophin correlated with liver steatosis (r=0.42, p=0.047), triacylglycerols (r=0.34, p=0.046), saturated (r=0.43, p=0.022), monounsaturated (r=0.51, p=0.007), and polyunsaturated fatty acids (r=−0.53, p=0.004). In the intervention study, baseline Angiopoietin-like protein 8/betatrophin correlated with age (r=0.32, p=0.010) and triacylglycerols (r=0.30, p=0.02) and was increased with hepatic steatosis (p=0.033). Weight loss reduced liver fat by 45% and circulating Angiopoietin-like protein 8/betatrophin by 11% (288±17 vs. 258±17 pg/ml; p=0.015). Angiopoietin-like protein 8/betatrophin is related to liver steatosis, while visceral adipose tissue represents an additional site of expression in humans.

* Equal contribution


Supporting Information

 
  • References

  • 1 Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 2013; 153: 747-758
  • 2 Chen J, Chen S, Huang P, Meng XL, Clayton S, Shen JS, Grayburn PA. In vivo targeted delivery of ANGPTL8 gene for beta cell regeneration in rats. Diabetologia 2015; 58: 1036-1044
  • 3 Gusarova V, Alexa CA, Na E, Stevis PE, Xin Y, Bonner-Weir S, Cohen JC, Hobbs HH, Murphy AJ, Yancopoulos GD, Gromada J. ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 2014; 159: 691-696
  • 4 Fu Z, Berhane F, Fite A, Seyoum B, Abou-Samra AB, Zhang R. Elevated circulating lipasin/betatrophin in human type 2 diabetes and obesity. Sci Rep 2014; 4: 5013
  • 5 Hu H, Sun W, Yu S, Hong X, Qian W, Tang B, Wang D, Yang L, Wang J, Mao C, Zhou L, Yuan G. Increased circulating levels of betatrophin in newly diagnosed type 2 diabetic patients. Diabetes Care 2014; 37: 2718-2722
  • 6 Espes D, Martinell M, Carlsson PO. Increased circulating betatrophin concentrations in patients with type 2 diabetes. Int J Endocrinol 2014; 323407
  • 7 Gómez-Ambrosi J, Pascual E, Catalán V, Rodríguez A, Ramírez B, Silva C, Gil MJ, Salvador J, Frühbeck G. Circulating betatrophin concentrations are decreased in human obesity and type 2 diabetes. J Clin Endocrinol Metab 2014; 99: 2004-2009
  • 8 Abu-Farha M, Abubaker J, Al-Khairi I, Cherian P, Noronha F, Hu FB, Behbehani K, Elkum N. Higher plasma betatrophin/ANGPTL8 level in Type 2 Diabetes subjects does not correlate with blood glucose or insulin resistance. Sci Rep 2015; 5: 10949
  • 9 Yamada H, Saito T, Aoki A, Asano T, Yoshida M, Ikoma A, Kusaka I, Toyoshima H, Kakei M, Ishikawa SE. Circulating betatrophin is elevated in patients with type 1 and type 2 diabetes. Endocr J 2015; 62: 417-421
  • 10 Fenzl A, Itariu BK, Kosi L, Fritzer-Szekeres M, Kautzky-Willer A, Stulnig TM, Kiefer FW. Circulating betatrophin correlates with atherogenic lipid profiles but not with glucose and insulin levels in insulin-resistant individuals. Diabetologia 2014; 57: 1204-1208
  • 11 Guo K, Lu J, Yu H, Zhao F, Pan P, Zhang L, Chen H, Bao Y, Jia W. Serum betatrophin concentrations are significantly increased in overweight but not in obese or type 2 diabetic individuals. Obesity (Silver Spring) 2015; 23: 793-797
  • 12 Hanefeld M, Appelt D, Engelmann K, Sandner D, Bornstein SR, Ganz X, Henkel E, Haase R, Birkenfeld AL. Serum and plasma levels of vascular endothelial growth factors in relation to quality of glucose control, biomarkers of inflammation, and diabetic nephropathy. Horm Metab Res 2016; 48: 529-534
  • 13 Wang YY, Zhang D, Jiang ZY, Lu XQ, Zheng X, Yu YJ, Wang YG, Dong J. Positive association between betatrophin and diabetic retinopathy risk in type 2 diabetes patients. Horm Metab Res 2016; 48: 169-173
  • 14 Espes D, Lau J, Carlsson PO. Increased circulating levels of betatrophin in individuals with long-standing type 1 diabetes. Diabetologia 2014; 57: 50-53
  • 15 Abu-Farha M, Abubaker J, Noronha F, Al-Khairi I, Cherian P, Alarouj M, Bennakhi A, Elkum N. Lack of associations between betatrophin/ANGPTL8 level and C-peptide in type 2 diabetic subjects. Cardiovasc Diabetol 2015; 14: 112
  • 16 Kaestner KH. Betatrophin-promises fading and lessons learned. Cell Metab 2014; 20: 932-933
  • 17 Yi P, Park JS, Melton DA. Perspectives on the activities of ANGPTL8/betatrophin. Cell 2014; 159: 467-468
  • 18 Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 2008; 134: 1369-1375
  • 19 Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 2012; 8: 92-103
  • 20 Chatrath H, Vuppalanchi R, Chalasani N. Dyslipidemia in patients with nonalcoholic fatty liver disease. Semin Liver Dis 2012; 32: 22-29
  • 21 Zhang R. Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem Biophys Res Commun 2012; 424: 786-792
  • 22 Zhang R, Abou-Samra AB. A dual role of lipasin (betatrophin) in lipid metabolism and glucose homeostasis: consensus and controversy. Cardiovasc Diabetol 2014; 13: 133
  • 23 Pivovarova von Loeffelholz C, Ilkavets I, Sticht C, Zhuk S, Murahovschi V, Lukowski S, Döcke S, Kriebel J, de Las Heras Gala T, Malashicheva A, Kostareva A, Lock JF, Stockmann M, Grallert H, Gretz N, Dooley S, Pfeiffer AF, Rudovich N. Modulation of Insulin degrading enzyme activity and liver cell proliferation. Cell Cycle 2015; 14: 2293-2300
  • 24 Haufe S, Engeli S, Kast P, Böhnke J, Utz W, Haas V, Hermsdorf M, Mähler A, Wiesner S, Birkenfeld AL, Sell H, Otto C, Mehling H, Luft FC, Eckel J, Schulz-Menger J, Boschmann M, Jordan J. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology 2011; 2011: 1504-1514
  • 25 Enke U, Jaudszus A, Schleussner E, Seyfarth L, Jahreis G, Kuhnt K. Fatty acid distribution of cord and maternal blood in human pregnancy: special focus on individual trans fatty acids and conjugated linoleic acids. Lipids Health Dis 2011; 10: 247
  • 26 Döcke S, Lock JF, Birkenfeld AL, Hoppe S, Lieske S, Rieger A, Raschzok N, Sauer IM, Florian S, Osterhoff MA, Heller R, Herrmann K, Lindenmüller S, Horn P, Bauer M, Weickert MO, Neuhaus P, Stockmann M, Möhlig M, Pfeiffer AF, von Loeffelholz C. Elevated hepatic chemerin mRNA expression in human non-alcoholic fatty liver disease. Eur J Endocrinol 2013; 169: 547-557
  • 27 Nidhina Haridas PA, Soronen J, Sädevirta S, Mysore R, Quagliarini F, Pasternack A, Metso J, Perttilä J, Leivonen M, Smas CM, Fischer-Posovszky P, Wabitsch M, Ehnholm C, Ritvos O, Jauhiainen M, Olkkonen VM, Yki-Järvinen H. Regulation of Angiopoietin-Like Proteins (ANGPTLs) 3 and 8 by Insulin. J Clin Endocrinol Metab 2015; 100: E1299-E1307
  • 28 Ren G, Kim JY, Smas CM. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab 2012; 303: E334-E351
  • 29 Wang Y, Quagliarini F, Gusarova V, Gromada J, Valenzuela DM, Cohen JC, Hobbs HH. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc Natl Acad Sci U S A 2013; 110: 16109-16114
  • 30 Vrablík M, Češka R. Treatment of hypertriglyceridemia: a review of current options. Physiol Res 2015; 64 (Suppl. 03) S331-S340
  • 31 Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 2014; 59: 713-723
  • 32 Hanefeld M, Pistrosch F, Bornstein SR, Birkenfeld AL. The metabolic vascular syndrome - guide to an individualized treatment. Rev Endocr Metab Disord 2016; 17: 5-17
  • 33 Lee YH, Lee SG, Lee CJ, Kim SH, Song YM, Yoon MR, Jeon BH, Lee JH, Lee BW, Kang ES, Lee HC, Cha BS. Association between betatrophin/ANGPTL8 and non-alcoholic fatty liver disease: animal and human studies. Sci Rep 2016; 6: 24013