Transfusionsmedizin 2017; 7(03): 149-161
DOI: 10.1055/s-0043-105031
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Genomeditierung in der Zell- und Gentherapie

Genome Editing in Cell and Gene Therapy
Jan Pruszak
1   Institut für Transfusionsmedizin und Gentherapie, Universitätsklinikum Freiburg, Freiburg
2   Freiburg iPS Core, Centrum für Chronische Immundefizienz, Universitätsklinikum Freiburg, Freiburg
,
Maximilian Müller
1   Institut für Transfusionsmedizin und Gentherapie, Universitätsklinikum Freiburg, Freiburg
,
Saskia König
1   Institut für Transfusionsmedizin und Gentherapie, Universitätsklinikum Freiburg, Freiburg
,
Toni Cathomen
1   Institut für Transfusionsmedizin und Gentherapie, Universitätsklinikum Freiburg, Freiburg
2   Freiburg iPS Core, Centrum für Chronische Immundefizienz, Universitätsklinikum Freiburg, Freiburg
3   Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. August 2017 (online)

Zusammenfassung

Gen- und zelltherapeutische Behandlungsansätze dienen als vielversprechende Grundlage zur Entwicklung neuer Therapieoptionen bei erworbenen und angeborenen Erkrankungen, für die bislang keine kurativen Behandlungsmethoden zur Verfügung stehen. Mit der Etablierung humaner induzierter pluripotenter Stammzellen vor 10 Jahren sowie der rasanten Entwicklung der Genomeditierung mittels Designernukleasen, insbesondere des CRISPR/Cas9-Systems, bieten sich der klinischen Medizin vielfältige Therapieoptionen an, die sich in noch nie dagewesener Geschwindigkeit weiterentwickeln und im Begriff stehen, klinische Routine verschiedenster Fachrichtungen auf revolutionäre Weise zu verändern. Auch für die Transfusionsmedizin, als klassisch zelltherapeutischem Fachgebiet, bedeuten diese Technologieplattformen ein weites Spektrum an Entwicklungsmöglichkeiten. Mit diesem Übersichtsartikel fassen wir die wesentlichen Grundlagen und den aktuellen Stand der Forschung, einschließlich experimenteller klinischer Studien, zusammen und bieten einen Ausblick auf mögliche Szenarien der Zukunft für die Stammzellforschung und die Gentherapie.

Abstract

Novel gene and cell therapeutic paradigms have opened promising avenues for treating acquired as well as hereditary disease entities that currently lack viable treatment options. The introduction of human induced pluripotent stem cells a decade ago in conjunction with the rapid development of genome editing approaches, most notably CRISPR-Cas9, offer unprecedented therapeutic opportunities. Transfusion medicine, with its traditional strong standing in cell therapy, can contribute to shaping the imminent clinical change and the impact these fields are about to have. In this review, we summarize fundamental principles, current research and clinical studies, and provide a perspective of future biomedical realities originating from these developments in stem cell research and gene therapy.

 
  • Literatur

  • 1 Shi Y, Inoue H, Wu JC et al. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 2017; 16: 115-130 doi:10.1038/nrd.2016.245
  • 2 Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nat Med 2017; 23: 415-423 doi:10.1038/nm.4313
  • 3 Wuchter P, Bieback K, Schrezenmeier H et al. Standardization of good manufacturing practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 2015; 17: 128-139 doi:10.1016/j.jcyt.2014.04.002
  • 4 Bonini NM, Berger SL. The sustained impact of model organisms in genetics and epigenetics. Genetics 2017; 205: 1-4 doi:10.1534/genetics.116.187864
  • 5 Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 2005; 6: 507-512
  • 6 Williams DA, Thrasher AJ. Concise review: lessons learned from clinical trials of gene therapy in monogenic immunodeficiency diseases. Stem Cells Transl Med 2014; 3: 636-642 doi:10.5966/sctm.2013-0206
  • 7 Naldini L. Gene therapy returns to centre stage. Nature 2015; 526: 351-360 doi:10.1038/nature15818
  • 8 Nathwani AC, Tuddenham EG, Rangarajan S et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365: 2357-2365 doi:10.1056/NEJMoa1108046
  • 9 Sadelain M. CAR therapy: the CD19 paradigm. J Clin Invest 2015; 125: 3392-3400 doi:10.1172/jci80010
  • 10 Dettmer V, Cathomen T, Hildenbeutel M. Genom-Editierung – neue Wege im klinischen Alltag. BIOspektrum 2017; 23: 155-158 doi:10.1007/s12268-017-0781-9
  • 11 Haas SA, Dettmer V, Cathomen T. Therapeutic genome editing with engineered nucleases. Hamostaseologie 2017; 37: 45-52 doi:10.5482/HAMO-16-09-0035
  • 12 Baigger A, Blasczyk R, Figueiredo C. Towards the manufacture of megakaryocytes and platelets for clinical application. Transfus Med Hemother 2017; 44: 165-173 doi:10.1159/000477261
  • 13 Teichweyde N, Horn PA, Klump H. HOXB4 increases Runx1 expression to promote the de novo formation of multipotent hematopoietic cells. Transfus Med Hemother 2017; 44: 128-134 doi:10.1159/000477130
  • 14 Borger AK, Eicke D, Wolf C et al. Generation of HLA-universal iPSCs-derived megakaryocytes and platelets for survival under refractoriness conditions. Mol Med 2016; DOI: 10.2119/molmed.2015.00235.
  • 15 Rousseau GF, Giarratana MC, Douay L. Large-scale production of red blood cells from stem cells: what are the technical challenges ahead?. Biotechnol J 2014; 9: 28-38 doi:10.1002/biot.201200368
  • 16 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676 doi:10.1016/j.cell.2006.07.024
  • 17 Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-872 doi:10.1016/j.cell.2007.11.019
  • 18 Schambach A, Cantz T, Baum C et al. Generation and genetic modification of induced pluripotent stem cells. Expert Opin Biol Ther 2010; 10: 1089-1103 doi:10.1517/14712598.2010.496775
  • 19 Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 2015; 14: 681-692 doi:10.1038/nrd4738
  • 20 Kang PJ, Moon JH, Yoon BS et al. Reprogramming of mouse somatic cells into pluripotent stem-like cells using a combination of small molecules. Biomaterials 2014; 35: 7336-7345 doi:10.1016/j.biomaterials.2014.05.015
  • 21 Black JB, Adler AF, Wang HG et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 2016; 19: 406-414 doi:10.1016/j.stem.2016.07.001
  • 22 Ieda M, Fu JD, Delgado-Olguin P et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142: 375-386 doi:10.1016/j.cell.2010.07.002
  • 23 Szabo E, Rampalli S, Risueno RM et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 2010; 468: 521-526 doi:10.1038/nature09591
  • 24 Urnov FD, Miller JC, Lee YL et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435: 646-651 doi:10.1038/nature03556
  • 25 Tebas P, Stein D, Tang WW et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370: 901-910 doi:10.1056/NEJMoa1300662
  • 26 Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011; 188: 773-782 doi:10.1534/genetics.111.131433
  • 27 Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 2010; 48: 419-436 doi:10.1146/annurev-phyto-080508-081936
  • 28 Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 2012; 23: 644-650 doi:10.1016/j.copbio.2012.01.013
  • 29 Jinek M, Chylinski K, Fonfara I et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-821 doi:10.1126/science.1225829
  • 30 Gasiunas G, Barrangou R, Horvath P et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 2012; 109: E2579-E2586 doi:10.1073/pnas.1208507109
  • 31 Makarova KS, Wolf YI, Alkhnbashi OS et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015; 13: 722-736 doi:10.1038/nrmicro3569
  • 32 Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346: 1258096 doi:10.1126/science.1258096
  • 33 Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 2016; 17: 300-312 doi:10.1038/nrg.2016.28
  • 34 Zetsche B, Gootenberg JS, Abudayyeh OO et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163: 759-771 doi:10.1016/j.cell.2015.09.038
  • 35 Kleinstiver BP, Tsai SQ, Prew MS et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 2016; 34: 869-874 doi:10.1038/nbt.3620
  • 36 Kim D, Kim J, Hur JK et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 2016; 34: 863-868 doi:10.1038/nbt.3609
  • 37 Ousterout DG, Kabadi AM, Thakore PI et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 2015; 6: 6244 doi:10.1038/ncomms7244
  • 38 Carroll D. Genome engineering with targetable nucleases. Annu Rev Biochem 2014; 83: 409-439 doi:10.1146/annurev-biochem-060713-035418
  • 39 Sharma R, Anguela XM, Doyon Y et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 2015; 126: 1777-1784 doi:10.1182/blood-2014-12-615492
  • 40 Tsai SQ, Zheng Z, Nguyen NT et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 2015; 33: 187-197 doi:10.1038/nbt.3117
  • 41 Kim D, Bae S, Park J et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 2015; 12: 237-243 231 p following 243. doi:10.1038/nmeth.3284
  • 42 Tsai SQ, Nguyen NT, Malagon-Lopez J et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods 2017; 14: 607-614 doi:10.1038/nmeth.4278
  • 43 Pattanayak V, Ramirez CL, Joung JK et al. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 2011; 8: 765-770 doi:10.1038/nmeth.1670
  • 44 Guilinger JP, Pattanayak V, Reyon D et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 2014; 11: 429-435 doi:10.1038/nmeth.2845
  • 45 Pattanayak V, Lin S, Guilinger JP et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 2013; 31: 839-843 doi:10.1038/nbt.2673
  • 46 Szczepek M, Brondani V, Buchel J et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 2007; 25: 786-793 doi:10.1038/nbt1317
  • 47 Miller JC, Holmes MC, Wang J et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007; 25: 778-785 doi:10.1038/nbt1319
  • 48 Urnov FD, Rebar EJ, Holmes MC et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11: 636-646 doi:10.1038/nrg2842
  • 49 Mussolino C, Alzubi J, Fine EJ et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 2014; 42: 6762-6773 doi:10.1093/nar/gku305
  • 50 Miller JC, Zhang L, Xia DF et al. Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nat Methods 2015; 12: 465-471 doi:10.1038/nmeth.3330
  • 51 Juillerat A, Pessereau C, Dubois G et al. Optimized tuning of TALEN specificity using non-conventional RVDs. Sci Rep 2015; 5: 8150 doi:10.1038/srep08150
  • 52 Mussolino C, Morbitzer R, Lutge F et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011; 39: 9283-9293 doi:10.1093/nar/gkr597
  • 53 Handel EM, Alwin S, Cathomen T. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther 2009; 17: 104-111 doi:10.1038/mt.2008.233
  • 54 Fu Y, Sander JD, Reyon D et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014; 32: 279-284 doi:10.1038/nbt.2808
  • 55 Müller M, Lee CM, Gasiunas G et al. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther 2016; 24: 636-644 doi:10.1038/mt.2015.218
  • 56 Kleinstiver BP, Pattanayak V, Prew MS et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016; 529: 490-495 doi:10.1038/nature16526
  • 57 Slaymaker IM, Gao L, Zetsche B et al. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351: 84-88 doi:10.1126/science.aad5227
  • 58 Lee CM, Cradick TJ, Bao G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther 2016; 24: 645-654 doi:10.1038/mt.2016.8
  • 59 Komor AC, Kim YB, Packer MS et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533: 420-424 doi:10.1038/nature17946
  • 60 Amabile A, Migliara A, Capasso P et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 2016; 167: 219-232.e14 doi:10.1016/j.cell.2016.09.006
  • 61 Kim S, Kim D, Cho SW et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014; 24: 1012-1019 doi:10.1101/gr.171322.113
  • 62 Dever DP, Bak RO, Reinisch A et al. CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 2016; 539: 384-389 doi:10.1038/nature20134
  • 63 Hoban MD, Cost GJ, Mendel MC et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 2015; 125: 2597-2604 doi:10.1182/blood-2014-12-615948
  • 64 Genovese P, Schiroli G, Escobar G et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 2014; 510: 235-240 doi:10.1038/nature13420
  • 65 Qasim W, Zhan H, Samarasinghe S et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 2017; 9: eaaj2013 doi:10.1126/scitranslmed.aaj2013
  • 66 Poirot L, Philip B, Schiffer-Mannioui C et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res 2015; 75: 3853-3864 doi:10.1158/0008-5472.can-14-3321
  • 67 Zuris JA, Thompson DB, Shu Y et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 2015; 33: 73-80 doi:10.1038/nbt.3081
  • 68 Cullis PR, Hope MJ. Lipid nanoparticle systems for enabling gene therapies. Mol Ther 2017; 25: 1467-1475 doi:10.1016/j.ymthe.2017.03.013
  • 69 Yin H, Song CQ, Dorkin JR et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016; 34: 328-333 doi:10.1038/nbt.3471
  • 70 Tabebordbar M, Zhu K, Cheng JK et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016; 351: 407-411 doi:10.1126/science.aad5177
  • 71 Nelson CE, Hakim CH, Ousterout DG et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016; 351: 403-407 doi:10.1126/science.aad5143
  • 72 Long C, Amoasii L, Mireault AA et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016; 351: 400-403 doi:10.1126/science.aad5725
  • 73 Garcon L, Ge J, Manjunath SH et al. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. Blood 2013; 122: 912-921 doi:10.1182/blood-2013-01-478321
  • 74 Boisset JC, Robin C. On the origin of hematopoietic stem cells: progress and controversy. Stem Cell Res 2012; 8: 1-13 doi:10.1016/j.scr.2011.07.002
  • 75 Puschnik AS, Majzoub K, Ooi YS et al. A CRISPR toolbox to study virus-host interactions. Nat Rev Microbiol 2017; 15: 351-364 doi:10.1038/nrmicro.2017.29
  • 76 Bean AG, Baker ML, Stewart CR et al. Studying immunity to zoonotic diseases in the natural host – keeping it real. Nat Rev Immunol 2013; 13: 851-861 doi:10.1038/nri3551
  • 77 Ditadi A, Sturgeon CM, Keller G. A view of human haematopoietic development from the Petri dish. Nat Rev Mol Cell Biol 2017; 18: 56-67 doi:10.1038/nrm.2016.127
  • 78 Zuniga-Pflucker JC. T-cell development made simple. Nat Rev Immunol 2004; 4: 67-72 doi:10.1038/nri1257
  • 79 Sugimura R, Jha DK, Han A et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 2017; 545: 432-438 doi:10.1038/nature22370
  • 80 Lis R, Karrasch CC, Poulos MG et al. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature 2017; 545: 439-445 doi:10.1038/nature22326
  • 81 Park CY, Kim DH, Son JS et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 2015; 17: 213-220 doi:10.1016/j.stem.2015.07.001
  • 82 Ma N, Liao B, Zhang H et al. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free beta-thalassemia induced pluripotent stem cells. J Biol Chem 2013; 288: 34671-34679 doi:10.1074/jbc.M113.496174
  • 83 Nayak RC, Trump LR, Aronow BJ et al. Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells. J Clin Invest 2015; 125: 3103-3116 doi:10.1172/JCI80924
  • 84 Dreyer AK, Hoffmann D, Lachmann N et al. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials 2015; 69: 191-200 doi:10.1016/j.biomaterials.2015.07.057
  • 85 Connelly JP, Kwon EM, Gao Y et al. Targeted correction of RUNX1 mutation in FPD patient-specific induced pluripotent stem cells rescues megakaryopoietic defects. Blood 2014; 124: 1926-1930 doi:10.1182/blood-2014-01-550525
  • 86 Themeli M, Riviere I, Sadelain M. New cell sources for T cell engineering and adoptive immunotherapy. Cell Stem Cell 2015; 16: 357-366 doi:10.1016/j.stem.2015.03.011
  • 87 Knorr DA, Ni Z, Hermanson D et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med 2013; 2: 274-283 doi:10.5966/sctm.2012-0084
  • 88 Lee N. The lancet technology: pharming blood. Lancet 2016; 387: 2496 doi:10.1016/s0140-6736(16)30800-5
  • 89 Fujita A, Uchida N, Haro-Mora JJ et al. Beta-globin-expressing definitive erythroid progenitor cells generated from embryonic and induced pluripotent stem cell-derived sacs. Stem Cells 2016; 34: 1541-1552 doi:10.1002/stem.2335
  • 90 Ackermann M, Liebhaber S, Klusmann JH et al. Lost in translation: pluripotent stem cell-derived hematopoiesis. EMBO Mol Med 2015; 7: 1388-1402 doi:10.15252/emmm.201505301
  • 91 Canver MC, Smith EC, Sher F et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 2015; 527: 192-197 doi:10.1038/nature15521
  • 92 Trakarnsanga K, Griffiths RE, Wilson MC et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun 2017; 8: 14750 doi:10.1038/ncomms14750
  • 93 Figueiredo C, Blasczyk R. A future with less HLA: potential clinical applications of HLA-universal cells. Tissue Antigens 2015; 85: 443-449 doi:10.1111/tan.12564
  • 94 Feng Q, Shabrani N, Thon JN et al. Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Reports 2014; 3: 817-831 doi:10.1016/j.stemcr.2014.09.010
  • 95 Gourraud PA, Gilson L, Girard M et al. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells 2012; 30: 180-186 doi:10.1002/stem.772
  • 96 Ledford H. Titanic clash over CRISPR patents turns ugly. Nature 2016; 537: 460-461 doi:10.1038/537460a
  • 97 Fears R, Ter Meulen V. How should the applications of genome editing be assessed and regulated?. Elife 2017; DOI: 10.7554/eLife.26295.
  • 98 DiGiusto DL, Cannon PM, Holmes MC et al. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol Ther Methods Clin Dev 2016; 3: 16067 doi:10.1038/mtm.2016.67