Exp Clin Endocrinol Diabetes 2018; 126(01): 7-13
DOI: 10.1055/s-0043-106442
Review
© Georg Thieme Verlag KG Stuttgart · New York

Genetic Polymorphisms of Antioxidant and Antiglycation Enzymes and Diabetic Complications. How Much Can we Learn from the Genes?

Dimitrios Oikonomou
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
,
Jan Benedikt Groener
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
,
Ruan Cheko
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
,
Zoltan Kender
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
,
Lars Kihm
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
,
Thomas Fleming
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
,
Stefan Kopf
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
,
Peter P Nawroth
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

received 06 March 2017
revised 06 March 2017

accepted 17 March 2017

Publication Date:
25 April 2017 (online)

Abstract

There is growing evidence that reactive metabolites, such as reactive oxygen species and dicarbonyls contribute to diabetic complications. Formation, accumulation, and detoxification of these metabolites are controlled by several enzymes, some of which have genetically determined levels of expression or function. This review not only gives an overview of the different SNPs studied in patients with diabetes mellitus type 1 and type 2, but in addition attempts to bridge the gap between a genetic study and clinical use. Therefore, not only the results of the studies are reviewed, but also their use in identification of subgroups where an increased or decreased risk for a diabetic complication is described, as well as their use in developing novel therapeutic options based on understanding the contribution of an enzyme to a given complication.

 
  • References

  • 1 Kloos C, Muller N, Hartmann P. et al. High quality of diabetes care based upon individualised treatment goals – a cross sectional study in 4784 patients in Germany. Exp Clin Endocrinol Diabetes 2016; 124: 294-299 doi:10.1055/s-0035-1569380
  • 2 Stanton RC. Diabetic kidney disease and hypertension. Exp Clin Endocrinol Diabetes 2016; 124: 93-98 doi:10.1055/s-0035-1559760
  • 3 Garg A, Grundy SM. Lovastatin for lowering cholesterol levels in non-insulin-dependent diabetes mellitus. N Engl J Med 1988; 318: 81-86 doi:10.1056/NEJM198801143180204
  • 4 Lind M, Oden A, Fahlen M. et al. The shape of the metabolic memory of HbA1c: re-analysing the DCCT with respect to time-dependent effects. Diabetologia 2010; 53: 1093-1098 doi:10.1007/s00125-010-1706-z
  • 5 Nawroth PP, Rudofsky G, Humpert P. Have we understood diabetes? New tasks for diagnosis and therapy. Exp Clin Endocrinol Diabetes 2010; 118: 1-3 doi:10.1055/s-0029-1246117
  • 6 Tancredi M, Rosengren A, Svensson AM. et al. Excess mortality among persons with type 2 diabetes. N Engl J Med 2015; 373: 1720-1732 doi:10.1056/NEJMoa1504347
  • 7 Jakus V, Rietbrock N. Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 2004; 53: 131-142
  • 8 Banerjee M, Vats P. Reactive metabolites and antioxidant gene polymorphisms in type 2 diabetes mellitus. Redox Biol 2014; 2: 170-177 doi:10.1016/j.redox.2013.12.001
  • 9 Folli F, Corradi D, Fanti P. et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: Avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev 2011; 7: 313-324
  • 10 Maritim AC, Sanders RA, Watkins 3rd JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17: 24-38 doi:10.1002/jbt.10058
  • 11 Rahimi R, Nikfar S, Larijani B. et al. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 2005; 59: 365-373 doi:10.1016/j.biopha.2005.07.002
  • 12 Tiwari BK, Pandey KB, Abidi AB. et al. Markers of oxidative stress during diabetes mellitus. J Biomark 2013; 2013: 378790 doi:10.1155/2013/378790
  • 13 Leslie RD, Beyan H, Sawtell P. et al. Level of an advanced glycated end product is genetically determined: A study of normal twins. Diabetes 2003; 52: 2441-2444
  • 14 Marrazzo G, Barbagallo I, Galvano F. et al. Role of dietary and endogenous antioxidants in diabetes. Crit Rev Food Sci Nutr 2014; 54: 1599-1616 doi:10.1080/10408398.2011.644874
  • 15 Pourvali K, Abbasi M, Mottaghi A. Role of superoxide dismutase 2 gene Ala16Val polymorphism and total antioxidant capacity in diabetes and its complications. Avicenna J Med Biotechnol 2016; 8: 48-56
  • 16 Bresciani G, Cruz IB, de Paz JA. et al. The MnSOD Ala16Val SNP: Relevance to human diseases and interaction with environmental factors. Free Radic Res 2013; 47: 781-792 doi:10.3109/10715762.2013.836275
  • 17 Houldsworth A, Hodgkinson A, Shaw S. et al. Polymorphic differences in the SOD-2 gene may affect the pathogenesis of nephropathy in patients with diabetes and diabetic complications. Gene 2015; 569: 41-45 doi:10.1016/j.gene.2015.04.006
  • 18 Ascencio-Montiel Ide J, Parra EJ, Valladares-Salgado A. et al. SOD2 gene Val16Ala polymorphism is associated with macroalbuminuria in Mexican type 2 diabetes patients: A comparative study and meta-analysis. BMC Med Genet 2013; 14: 110 doi:10.1186/1471-2350-14-110
  • 19 Flekac M, Skrha J, Hilgertova J. et al. Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC Med Genet 2008; 9: 30 doi:10.1186/1471-2350-9-30
  • 20 el-Masry TM, Zahra MA, el-Tawil MM. et al. Manganese superoxide dismutase alanine to valine polymorphism and risk of neuropathy and nephropathy in Egyptian type 1 diabetic patients. Rev Diabet Stud 2005; 2: 70-74 doi:10.1900/RDS.2005.2.70
  • 21 Lee SJ, Choi MG, Kim DS. et al. Manganese superoxide dismutase gene polymorphism (V16A) is associated with stages of albuminuria in Korean type 2 diabetic patients. Metabolism 2006; 55: 1-7 doi:10.1016/j.metabol.2005.04.030
  • 22 Lee SJ, Choi MG. Association of manganese superoxide dismutase gene polymorphism (V16A) with diabetic macular edema in Korean type 2 diabetic patients. Metabolism 2006; 55: 1681-1688 doi:10.1016/j.metabol.2006.08.011
  • 23 Chistyakov DA, Savost'anov KV, Zotova EV. et al. Polymorphisms in the Mn-SOD and EC-SOD genes and their relationship to diabetic neuropathy in type 1 diabetes mellitus. BMC Med Genet 2001; 2: 4
  • 24 Petrovic MG, Cilensek I, Petrovic D. Manganese superoxide dismutase gene polymorphism (V16A) is associated with diabetic retinopathy in Slovene (Caucasians) type 2 diabetes patients. Dis Markers 2008; 24: 59-64
  • 25 Ye LX, Yang MP, Qiu H. et al. Association of the polymorphism in manganese superoxide dismutase gene with diabetic retinopathy in Chinese type 2 diabetic patients. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2008; 25: 452-454
  • 26 Mollsten A, Marklund SL, Wessman M. et al. A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy. Diabetes 2007; 56: 265-269 doi:10.2337/db06-0698
  • 27 Mollsten A, Jorsal A, Lajer M. et al. The V16A polymorphism in SOD2 is associated with increased risk of diabetic nephropathy and cardiovascular disease in type 1 diabetes. Diabetologia 2009; 52: 2590-2593 doi:10.1007/s00125-009-1550-1
  • 28 Al-Kateb H, Boright AP, Mirea L. et al. Multiple superoxide dismutase 1/splicing factor serine alanine 15 variants are associated with the development and progression of diabetic nephropathy: The diabetes control and complications trial/epidemiology of diabetes interventions and complications genetics study. Diabetes 2008; 57: 218-228 doi:10.2337/db07-1059
  • 29 Mohammedi K, Maimaitiming S, Emery N. et al. Allelic variations in superoxide dismutase-1 (SOD1) gene are associated with increased risk of diabetic nephropathy in type 1 diabetic subjects. Mol Genet Metab 2011; 104: 654-660 doi:10.1016/j.ymgme.2011.08.033
  • 30 Neves AL, Mohammedi K, Emery N. et al. Allelic variations in superoxide dismutase-1 (SOD1) gene and renal and cardiovascular morbidity and mortality in type 2 diabetic subjects. Mol Genet Metab 2012; 106: 359-365 doi:10.1016/j.ymgme.2012.04.023
  • 31 Mohammedi K, Bellili-Munoz N, Marklund SL. et al. Plasma extracellular superoxide dismutase concentration, allelic variations in the SOD3 gene and risk of myocardial infarction and all-cause mortality in people with type 1 and type 2 diabetes. Cardiovasc Diabetol 2015; 14: 845 doi:10.1186/s12933-014-0163-2
  • 32 Abraham NG, Kappas A. Heme oxygenase and the cardiovascular-renal system. Free Radic Biol Med 2005; 39: 1-25 doi:10.1016/j.freeradbiomed.2005.03.010
  • 33 Courtney AE, Maxwell AP. Heme oxygenase 1: Does it have a role in renal cytoprotection?. Am J Kidney Dis 2008; 51: 678-690 doi:10.1053/j.ajkd.2007.11.033
  • 34 Andrews M, Leiva E, Arredondo-Olguin M. Short repeats in the heme oxygenase 1 gene promoter is associated with increased levels of inflammation, ferritin and higher risk of type-2 diabetes mellitus. J Trace Elem Med Biol 2016; 37: 25-30 doi:10.1016/j.jtemb.2016.06.001
  • 35 Chen YH, Chau LY, Chen JW. et al. Serum bilirubin and ferritin levels link heme oxygenase-1 gene promoter polymorphism and susceptibility to coronary artery disease in diabetic patients. Diabetes Care 2008; 31: 1615-1620 doi:10.2337/dc07-2126
  • 36 Chen YH, Lin SJ, Lin MW. et al. Microsatellite polymorphism in promoter of heme oxygenase-1 gene is associated with susceptibility to coronary artery disease in type 2 diabetic patients. Hum Genet 2002; 111: 1-8 doi:10.1007/s00439-002-0769-4
  • 37 Lee EY, Lee YH, Kim SH. et al. Association between heme oxygenase-1 promoter polymorphisms and the development of albuminuria in type 2 diabetes: A case-control study. Medicine (Baltimore) 2015; 94: e1825 doi:10.1097/MD.0000000000001825
  • 38 Bao W, Song F, Li X. et al. Association between heme oxygenase-1 gene promoter polymorphisms and type 2 diabetes mellitus: A huge review and meta-analysis. Am J Epidemiol 2010; 172: 631-636 doi:10.1093/aje/kwq162
  • 39 Tripodis N, Mason R, Humphray SJ. et al. Physical map of human 6p21.2-6p21.3: Region flanking the centromeric end of the major histocompatibility complex. Genome Res 1998; 8: 631-643
  • 40 Skapare E, Konrade I, Liepinsh E. et al. Association of reduced glyoxalase 1 activity and painful peripheral diabetic neuropathy in type 1 and 2 diabetes mellitus patients. J Diabetes Complications 2013; 27: 262-267 doi:10.1016/j.jdiacomp.2012.12.002
  • 41 Peculis R, Konrade I, Skapare E. et al. Identification of glyoxalase 1 polymorphisms associated with enzyme activity. Gene 2013; 515: 140-143 doi:10.1016/j.gene.2012.11.009
  • 42 Wu JC, Li XH, Peng YD. et al. Association of two glyoxalase I gene polymorphisms with nephropathy and retinopathy in Type 2 diabetes. J Endocrinol Invest 2011; 34: e343-e348 doi:10.3275/7856
  • 43 Wu JC, Li XH, Wang JB. et al. Glyoxalase I and aldose reductase gene polymorphisms and susceptibility to carotid atherosclerosis in type 2 diabetes. Genet Test Mol Biomarkers 2011; 15: 273-279 doi:10.1089/gtmb.2010.0075
  • 44 Groener JB, Reismann P, Fleming T. et al. C332C genotype of glyoxalase 1 and its association with late diabetic complications. Exp Clin Endocrinol Diabetes 2013; 121: 436-439 doi:10.1055/s-0033-1345124
  • 45 Skrha Jr. J, Muravska A, Flekac M. et al. Fructosamine 3-kinase and glyoxalase I polymorphisms and their association with soluble RAGE and adhesion molecules in diabetes. Physiol Res 2014; 63 (Suppl. 02) S283-S291
  • 46 Engelen L, Ferreira I, Brouwers O. et al. Polymorphisms in glyoxalase 1 gene are not associated with vascular complications: The hoorn and CoDAM studies. J Hypertens 2009; 27: 1399-1403 doi:10.1097/HJH.0b013e32832af6ba
  • 47 Xue M, Weickert MO, Qureshi S. et al. Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation. Diabetes 2016; 65: 2282-2294 doi:10.2337/db16-0153
  • 48 Petrash JM. All in the family: Aldose reductase and closely related aldo-keto reductases. Cell Mol Life Sci 2004; 61: 737-749 doi:10.1007/s00018-003-3402-3
  • 49 Sivenius K, Niskanen L, Voutilainen-Kaunisto R. et al. Aldose reductase gene polymorphisms and susceptibility to microvascular complications in Type 2 diabetes. Diabet Med 2004; 21: 1325-1333 doi:10.1111/j.1464-5491.2004.01345.x
  • 50 Nomair AM, ElDeeb MM, Maharem DA. Aldose reductase (-106) C/T gene polymorphism and possibility of macrovascular complications in Egyptian type 2 diabetic patients. Indian J Endocrinol Metab 2016; 20: 648-655 doi:10.4103/2230-8210.190549
  • 51 Kaur N, Vanita V. Association of aldose reductase gene (AKR1B1) polymorphism with diabetic retinopathy. Diabetes Res Clin Pract 2016; 121: 41-48 doi:10.1016/j.diabres.2016.08.019
  • 52 Song ZD, Tao Y, Han N. et al. Association of the aldose reductase-106TT genotype with increased risk for diabetic retinopathy in the Chinese Han population: An updated meta-analysis. Curr Eye Res 2016; 41: 1087-1091 doi:10.3109/02713683.2015.1084642
  • 53 Donaghue KC, Margan SH, Chan AK. et al. The association of aldose reductase gene (AKR1B1) polymorphisms with diabetic neuropathy in adolescents. Diabet Med 2005; 22: 1315-1320 doi:10.1111/j.1464-5491.2005.01631.x
  • 54 Boulton AJ, Kempler P, Ametov A. et al. Whither pathogenetic treatments for diabetic polyneuropathy?. Diabetes Metab Res Rev 2013; 29: 327-333 doi:10.1002/dmrr.2397
  • 55 Jagdale AD, Bavkar LN, More TA. et al. Strong inhibition of the polyol pathway diverts glucose flux to protein glycation leading to rapid establishment of secondary complications in diabetes mellitus. J Diabetes Complications 2016; 30: 398-405 doi:10.1016/j.jdiacomp.2016.01.001
  • 56 Satoh J, Kohara N, Sekiguchi K. et al. Effect of ranirestat on sensory and motor nerve function in japanese patients with diabetic polyneuropathy: A randomized double-blind placebo-controlled study. J Diabetes Res 2016; 2016: 5383797 doi:10.1155/2016/5383797
  • 57 Goto Y, Hotta N, Shigeta Y. et al. Effects of an aldose reductase inhibitor, epalrestat, on diabetic neuropathy. Clinical benefit and indication for the drug assessed from the results of a placebo-controlled double-blind study. Biomed Pharmacother 1995; 49: 269-277 doi:10.1016/0753-3322(96)82642-4
  • 58 Hotta N, Akanuma Y, Kawamori R. et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: The 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care 2006; 29: 1538-1544 doi:10.2337/dc05-2370
  • 59 Patil KK, Gacche RN. Inhibition of glycation and aldose reductase activity using dietary flavonoids: A lens organ culture studies. Int J Biol Macromol 2017; 98: 730-738 doi:10.1016/j.ijbiomac.2017.01.129
  • 60 Zhao J, Zhong CJ. A review on research progress of transketolase. Neurosci Bull 2009; 25: 94-99 doi:10.1007/s12264-009-1113-y
  • 61 Pacal L, Kuricova K, Kankova K. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco- and lipotoxicity by rational supplementation?. World J Diabetes 2014; 5: 288-295 doi:10.4239/wjd.v5.i3.288
  • 62 Thornalley PJ, Babaei-Jadidi R, Al Ali H. et al. High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia 2007; 50: 2164-2170 doi:10.1007/s00125-007-0771-4
  • 63 Rabbani N, Alam SS, Riaz S. et al. High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: A randomised, double-blind placebo-controlled pilot study. Diabetologia 2009; 52: 208-212 doi:10.1007/s00125-008-1224-4
  • 64 Tanhauserova V, Kuricova K, Pacal L. et al. Genetic variability in enzymes of metabolic pathways conferring protection against non-enzymatic glycation versus diabetes-related morbidity and mortality. Clin Chem Lab Med 2014; 52: 77-83 doi:10.1515/cclm-2012-0833
  • 65 Pacal L, Tomandl J, Svojanovsky J. et al. Role of thiamine status and genetic variability in transketolase and other pentose phosphate cycle enzymes in the progression of diabetic nephropathy. Nephrol Dial Transplant 2011; 26: 1229-1236 doi:10.1093/ndt/gfq550
  • 66 Porta M, Toppila I, Sandholm N. et al. Variation in SLC19A3 and protection from microvascular damage in type 1 diabetes. Diabetes 2016; 65: 1022-1030 doi:10.2337/db15-1247
  • 67 Ziegler D, Schleicher E, Strom A. et al. Association of transketolase polymorphisms with measures of polyneuropathy in patients with recently diagnosed diabetes. Diabetes Metab Res Rev 2016; DOI: 10.1002/dmrr.2811.