Pneumologie 2017; 71(07): 437-453
DOI: 10.1055/s-0043-109628
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Spacer, Aerosoltherapie durch Raum und Zeit

Spacer, Aerosol Therapy through Space and Time
Thomas Voshaar
1   Med. Klinik III, Schwerpunkt Pneumologie, Allergologie, Klin. Immunologie, Zentrum für Schlaf- und Beatmungsmedizin, Lungenzentrum (DKG), Akademisches Lehrkrankenhaus der Universität Duisburg-Essen, Krankenhaus Bethanien, Moers
,
Peter Haidl
2   Fachkrankenhaus Kloster Grafschaft GmbH, Akad. Lehrkrankenhaus der Philipps-Universität Marburg, Chefarzt Abteilung Pneumologie II, Schmallenberg
,
Rolf Michael Clös
3   Mundipharma GmbH, Limburg
› Author Affiliations
Further Information

Publication History

eingereicht 21 September 2016

akzeptiert 01 December 2016

Publication Date:
12 July 2017 (online)

Zusammenfassung

Ziel der Literaturübersicht In diesem Review werden die Ergebnisse einer Literaturanalyse zur Anwendung von Spacern mit Dosieraerosolen beschrieben und bewertet.

Methodik Neben einer umfangreichen Aufarbeitung der Spacereffekte werden die Auswirkungen aktueller Leitlinien und Rahmenbedingungen für Produktzulassungen auf die Spaceranwendung beschrieben, die sich aus der Interaktion der Eigenschaften von Dosieraerosolen mit einem Spacer ergeben.

Ergebnisse Zur Vermeidung von Koordinationsproblemen bei der Auslösung eines Dosieraerosols zu Beginn der Einatmung sind Spacer generell sinnvoll. Für alle Dosieraerosol-Spacer-Kombinationen gilt zudem, dass die Mund-Rachen-Deposition im Vergleich zur Dosieraerosolanwendung ohne Spacer reduziert wird. Einige neuere Dosieraerosole setzen allerdings das Aerosol in einer Qualität frei, die einen Spacer zur Vermeidung einer hohen Wirkstoffdeposition im Mund-Rachen-Raum nicht zwingend erforderlich macht, weil die Aerosolqualität über einen Spacer nicht mehr wesentlich verbessert werden kann. Die aus einem Spacer freigesetzte Wirkstoffmasse und die Aerosolqualität variieren aber erheblich bei Verwendung unterschiedlicher Spacer. Ein Spacerwechsel kann bei Verwendung des gleichen Dosieraerosols maximal zu einer Verdopplung oder Halbierung der applizierten Wirkstoffmenge führen. Diese Fakten werden inzwischen von der europäischen Zulassungsbehörde berücksichtigt.

Schlussfolgerung Die Fachinformationen der Dosieraerosole, die nach 2009 entwickelt und zugelassen wurden, sollten, sofern eine Spaceranwendung vorgesehen ist, mindestens eine konkrete Spacerempfehlung aussprechen, die auf entsprechenden In-vitro-Daten bzw. ergänzenden In-vivo-Daten beruht. Wird ein anderer Spacer als der empfohlene mit diesem Dosieraerosol eingesetzt, ist es nicht möglich, die applizierte Dosis vorherzusehen. Dies sollte bei der Spacerauswahl berücksichtigt werden.

Abstract

Aim of the literature review Within this review, results of a literature analysis on the application of spacers with pressurized metered dose inhalers (pMDI) are described and evaluated.

Methods Next to an extensive revision on effects of spacers, the impacts of current guidelines and the conditions for product authorisations on the use of spacers are described which result from the interplay of characteristics from dose inhalers with a spacer.

Results Spacers are generally useful to avoid coordination problems concerning the actuation of a pMDI at the beginning of an inhalation. Furthermore, in comparison to the pMDI application without a spacer a reduced mouth-throat deposition is applicable to all pMDI spacer combinations. However, some new pMDI release the aerosol in a quality that may not necessarily require a spacer to avoid a high drug deposition in the mouth-throat area as the aerosol quality will not be greatly improved with a spacer. The delivered mass of the active ingredient as well as the aerosol quality released from a spacer vary substantially with the use of different spacers. A change of spacer while using the same dose inhaler can maximally result in a doubling or halving of the quantity of the active ingredient applied. These facts are nowadays considered by the European regulatory agency.

Conclusion If a spacer application is intended for pMDIs that were developed and approved after 2009, the correspondent SMP (Summary of Product Characteristics) should at least make one specific recommendation for a spacer that should be based upon relevant in vitro data or additional in vivo data. If a different spacer than the recommended one is used, the effectively applied dose cannot be correctly anticipated. This should be considered when choosing a spacer.

 
  • Literatur

  • 1 Nikander K, Nicholls C, Denyer J. et al. The evolution of spacers and valved holding chambers. J Aerosol Med Pulm Drug Deliv 2014; 27: S4-23
  • 2 Köhler D, Fleischer W. Theorie und Praxis der Inhalationstherapie (Theory and practice of inhalation therapy). München: Arcis-Verlag; 2000
  • 3 Voshaar T. Therapie mit Aerosolen (Therapy with aerosols). Bremen: Unimed Verlag AG; 2005
  • 4 Terzano C. Pressurized metered dose inhalers and add-on devices. Pulm Pharmacol Ther 2001; 14: 351-366
  • 5 Lavorini F, Fontana GA. Targeting drugs to the airways: the role of spacer devices. Expert Opin. Drug Deliv 2009; 6: 91-102
  • 6 Franklin W, Lowell FC, Michelson AL. et al. Aerosolized steroids in bronchial asthma. J Allergy 1958; 29: 214-221
  • 7 Orehec J, Gayrard P, Grimaud C. et al. Patient error in use of bronchodilator metered aerosols. Br Med J 1976; 1: 76
  • 8 Paterson IC, Crompton GK. Use of pressurized aerosols by asthmatic patients. Br Med J 1976; 1: 76-77
  • 9 Crompton GK. Problems patients have using pressurized aerosol inhalers. Eur J Respir Dis Suppl 1982; 119: 101-104
  • 10 Gabrio BJ, Stein SW, Velasquez DJ. A new method to evaluate plume characteristics of hydrofluoroalkane and chlorofluorocarbon metered dose inhalers. Int J Pharm 1999; 186: 3-12
  • 11 Lewis D. Metered-dose inhalers: actuators old and new. Expert Opin Drug Deliv. 2007; 4: 235-245
  • 12 Leach C. Effect of formulation parameters on hydrofluoroalkane-beclomethasone dipropionate drug deposition in humans. J Allergy Clin Immunol 1999; 104: 250-252
  • 13 Leach CL. The CFC to HFA transition and its impact on pulmonary drug development. Respir Care 2005; 50: 1201-1206
  • 14 Laube BL, Janssens HM, de Jongh FH. et al. What the pulmonary specialist should know about the new inhalation therapies. Eur Respir J 2011; 37: 1308-1331
  • 15 Sanders M. Inhalation therapy: an historical review. Prim Care Respir J 2007; 16: 71-81
  • 16 Roche N, Dekhuijzen R. The evolution of pressurized metered-dose inhalers from early to modern devices. J Aerosol Med Pulm Drug Deliv DOI: 10.1089/jamp.2015.1232.
  • 17 Barnes PJ, Pedersen S, Busse WW. Efficacy and safety of inhaled corticosteroids New developments. Am J Respir Crit Care Med 1998; 157: S1-53
  • 18 Hutchison S, Westfall L, Corby ST. Incidence and treatment cost of oral candidiasis among users of inhaled bronchial steroids. JCOM 2001; 8: 19-22
  • 19 Kaliner M, Amin A, Gehling R. et al. Impact of inhaled corticosteroid-induced oropharyngeal side effects on treatment patterns and costs in asthmatic patients: results from a delphi panel. Pharmacy and Therapeutics (P&T®) 2005; 30: 577-601
  • 20 Buhl R. Local oropharyngeal side effects of inhaled corticosteroids in patients with asthma. Allergy 2006; 61: 518-526
  • 21 Peters SP, Benninger MS, Hankin CS. et al. Incidence of oral candidiasis among patients with asthma receiving fluticasone propionate/salmeterol dry powder inhaler versus extra-fine beclomethasone dipropionate hydrofluoroalkane: large-scale retrospective claims analysis. Annual Meeting of the American Academy of Allergy, Asthma & Immunology. 2013 Poster #6
  • 22 Adams N, Bestall JM, Lasserson TJ. et al. Inhaled fluticasone versus inhaled beclomethasone or inhaled budesonide for chronic asthma. Cochrane Database Syst Rev 2004; 2: CD002310
  • 23 Wilkes W, Fink J, Dhand R. Selecting an accessory device with a metered-dose inhaler: variable influence of accessory device on fine particle dose, throat deposition, and drug delivery with asynchronous actuation from a metered-dose inhaler. J Aerosol Med 2001; 14: 351-360
  • 24 Taylor SA, Asmus MJ, Liang J. et al. Performance of a corticoid inhaler with a spacer fashioned from a plastic cold-drink bottle: effects of changing bottle volume. J Asthma 2003; 40: 237-242
  • 25 Sheth P, Bertsch MD, Knapp CL. et al. In vitro evaluation of nonconventional accessory devices for pressurized metered-dose inhalers. Ann Allergy Asthma Immunol 2014; 113: 55-62
  • 26 Rachelefsky GS, Liao Y, Faruqi R. Impact of inhaled corticosteroid-induced oropharyngeal adverse events. Results from a meta-analysis. Ann Allergy Asthma Immunol 2007; 98 (Suppl. 03) 225-238
  • 27 Galván CA, Guarderas JC. Practical considerations for dysphonia caused by inhaled corticosteroids. Mayo Clin Proc 2012; 87: 901-904
  • 28 Williamson IJ, Matusiewicz SP, Brown PH. et al. Frequency of voice problems and cough in patients using pressurized aerosol inhaled steroid preparations. Eur Respir J 1995; 8: 590-592
  • 29 Dubus JC, Marguet C, Deschildre A. et al. Local side-effects of inhaled corticosteroids in asthmatic children: influence of drug, dose, age, and device. Allergy 2001; 56: 944-948
  • 30 Melani AS, Bonavia M, Cilenti V. et al. Inhaler mishandling remains common in real life and is associated with reduced disease control. Respir Med 2011; 105: 930-938
  • 31 Molimard M, Raherison C, Lignot S. et al. Assessment of handling of inhaler devices in real life: an observational study in 3811 patients in primary care. J Aerosol Med 2003; 16: 249-254
  • 32 Giraud V, Roche N. Misuse of corticosteroid metered-dose inhaler is associated with decreased asthma stability. Eur Respir J 2002; 19: 246-251
  • 33 O’Callaghan C, Cant M, Robertson C. Delivery of beclometasone-diproprionate from a spacer device: what dose is available for inhalation?. Thorax 1994; 49: 961-964
  • 34 Barry PW, O'Callaghan C. The effect of delay, multiple actuations and spacer static charge on the in vitro delivery of budesonide from the Nebuhaler. Br J Clin Pharmacol 1995; 40: 76-77
  • 35 Zuberbuhler P, Wang Z, Finlay WH. In vitro testing of a new non-electrostatic holding chamber (the VortexTM) with hydrofluoralkane salbutamol and beclomethasone inhalers. Chest 2002; 122: 185
  • 36 Suggett J, Mitchell J, Doyle C. et al. Antistatic valved holding chambers do not necessarily offer similar aerosol delivery performance. European Respiratory Society, Annual Congress, Barcelona, Spain, September 7–11, 2013 Eur Respir J. 42. Suppl 57 Abstract Number: 79 Publication Number: 2407 volume 57
  • 37 König P. Spacer devices used with metered dose inhalers. Breakthrough or gimmick?. Chest 1985; 88: 276-284
  • 38 Brambilla G, Church T, Lewis D. et al. Plume temperature emitted from metered dose inhalers. Int J Pharm 2011; 405: 9-15
  • 39 Johal B, Murphy S, Tuohy J. et al. Plume characteristics of two HFA-driven inhaled corticosteroid/long-acting beta2-agonist combination pressurized metered-dose inhalers. Adv Ther 2015; 32: 567-579
  • 40 Newman SP, Millar AB, Lennard-Jones TR. et al. Improvement of pressurised aerosol deposition with Nebuhaler spacer device. Thorax 1984; 39: 935-941
  • 41 Matthys H, Eltschka R, App EM. Deposition eines markierten ß2-Sympatomimetikum-Aerosols. Atemw.-Lungenkrkh 1988; 10: 485-489
  • 42 Dempsey OJ, Wilson AM, Coutie WJR. et al. Evaluation of the effect of a large volume spacer on the systemic bioactivity of fluticasone propionate metered-dose inhaler. Chest 1999; 116: 935-940
  • 43 Newman SP, Newhouse MT. Effect of add-on devices for aerosol drug delivery: deposition studies and clinical aspects. J Aerosol Med 1996; 9: 55-70
  • 44 Morén F. Drug deposition of pressurized inhalation aerosols. I. Influence of actuator tube design. Int J Pharm 1978; 1: 205-212 In: Morén F. Studies on pressurized aerosols for oral inhalation [Dissertation]. Abstracts of Uppsala Dissertations from the Faculty of Pharmacy. University of Uppsala, Sweden; 1980
  • 45 Feddah MJ, Davies NM, Gipps EM. et al. Influence of respiratory spacer devices on aerodynamic particle size distribution and fine particle mass of beclomethasone from metered-dose inhalers. J Aerosol Med 2001; 14: 477-485
  • 46 Müller-Walz R, Fueg LM, Brindley A. et al. Delivery from flutiform pressurized metered dose inhaler (MDI) with and without valved holding chamber (VHC). Respiratory Drug Delivery Europe 2011; 431-434
  • 47 Singh D, Collarini S, Poli G. et al. Effect of AeroChamber Plus™ on the lung and systemic bioavailability of beclometasone dipropionate/formoterol pMDI. Br J Clin Pharmacol 2011; 72: 932-939
  • 48 Barry PW, O’Callaghan C. Inhalational drug delivery from seven different spacer devices. Thorax 1996; 51: 835-840
  • 49 Barry PW, OʼCallaghan C. A comparative analysis of the particle size output of beclomethasone dopropionate, salmeterol xinafoate and fluticasone propionate metered dose inhalers used with the Babyhaler, Volumatic and Aerochamber spacer devices. Br J Clin Pharmacol 1999; 47: 357-360
  • 50 Leach CL, Colice GL. A pilot study to assess lung deposition of HFA-beclomethasone and CFC-beclomethason from a pressurized metered dose inhaler with and without add-on spacers and using varying breathhold times. J Aerosol Med Pulm Drug Deliv 2010; 23: 355-361
  • 51 Bisgaard H, Anhøj J, Klug B. et al. A non-electrostatic spacer for aerosol delivery. Arch Dis Child 1995; 73: 226-230
  • 52 Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Im Internet: www.ginasthma.org [Stand: 2015]
  • 53 Medicines and Healthcare Products Regulatory Agency (UK). Drug Safety Update – Inhaled products that contain corticosteroids. July 2008
  • 54 Barry PW, O’Callaghan C. The optimum size and shape of spacer devices for inhalation therapy. J Aerosol Med 1995; 8: 303-305
  • 55 Mitchell JP, Nagel MW, Rau JL. Performance of large-volume versus small-volume holding chambers with chlorofluorocarbon-albuterol and hydrofluoroalkane-albuterol sulfate. Respir Care 1999; 44: 38-44
  • 56 Mitchell JP, Nagel MW. Valved holding chambers (VHCs) for use with pressurised metered-dose inhalers (pMDIs): a review of the causes of inconsistent medication delivery. Prim Care Respir J 2007; 16: 207-214
  • 57 O’Callaghan C, Lynch J, Cant M. et al. Improvement in sodium cromoglycate delivery from a spacer device by use of an antistatic lining, immediate inhalation, and avoiding multiple actuations of drug. Thorax 1993; 48: 603-606
  • 58 Berg E. In vitro properties of pressurized metered dose inhalers with and without spacer devices. J Aerosol Med 1995; 8 (Suppl. 03) 3-10
  • 59 Anhøj J, Bisgaard H, Lipworth BJ. Effect of electrostatic charge in plastic spacers on the lung delivery of HFA-salbutamol in children. Br J Clin Pharmacol 1999; 47: 333-336
  • 60 Barry PW, OʼCallaghan C. Multiple actuations of salbutamol MDI into a spacer devices reduce the amount of drug recovered in the respirable range. Eur Respir J 1994; 7: 1707-1709
  • 61 Fink JB. Metered-dose inhalers, dry powder inhalers, and transitions. Respir Care 2000; 45: 624-635
  • 62 Kenyon CJ, Thorsson L, Borgstrom L. et al. The effects of static charge in spacer devices on glucocorticosteroid aerosol deposition in asthmatic patients. Eur Respir J 1998; 11: 606-610
  • 63 Wildhaber JH, Devadason SG, Hayden MJ. et al. Electrostatic charge on a plastic spacer device influences the delivery of salbutamol. Eur Respir J 1996; 9: 1943-1946
  • 64 Pierart F, Wildhaber JH, Vrancken I. et al. Washing plastic spacers in household detergent reduces electrostatic charge and greatly improves delivery. Eur Respir J 1999; 13: 673-678
  • 65 Stein SW, Sheth P, Hodson PD. et al. Advances in metered dose inhaler technology: hardware development. AAPS PharmSciTech 2014; 15: 326-338
  • 66 Colice GL. Comparing Inhaled Corticosteroids. Respir Care 2000; 45: 846-853
  • 67 Stein SW. Estimating the number of droplets and drug particles emitted from MDIs. AAPS PharmSciTech 2008; 9: 112-115
  • 68 Clark AR. MDIs: Physics of Aerosol Formation. J. Aerosol Med 1996; 9: 19-26
  • 69 Borgström L, Olsson B, Thorsson L. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aerosol Med 2006; 19: 473-483
  • 70 Zanen P, Laube BL. Targeting the lungs with therapeutic aerosols. In: Drug delivery to the lung. New York: Marcel Dekker; 2002. 162: 211-268
  • 71 Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of ß2-Agonist particle size. Am J Respir Crit Care Med 2005; 172: 1497-1504
  • 72 Bonini M, Usmani OS. The importance of inhaler devices in the treatment of COPD. COPD Research and Practice 2015; 1: 9
  • 73 Johal B, Howald M, Fischer M. et al. Fine particle profile of fluticasone propionate/formoterol fumarate versus other combination products: the DIFFUSE study. Comb Prod Ther 2013; 3: 39-51
  • 74 De Backer W, Devolder A, Poli G. et al. Lung Deposition of BDP/Formoterol HFA pMDI in healthy volunteers, asthmatic, and COPD patients. J Aerosol Med Pulm Drug Deliv 2010; 23: 137-148
  • 75 Venthoye G, Brindley A, Fischer M. et al. Investigation of the robustness of flutiform HFA pressurized metered dose inhaler through simulated patient use studies. Resp Drug Delivery Europe 2011; 2: 435-438
  • 76 Clark A, Borgström L. In vitro testing of pharmaceutical aerosols and predicting lung deposition from in vitro measurements. In: Drug delivery to the lung. New York: Marcel Dekker; 2002. 162: 105-142
  • 77 Chercham D, Cloes RM. Bei Dosieraerosol und Autohaler mit Beclometason dipropionat (BDP) gelöst im Treibmittel Hydrofluoralkan (HFA) ist ein Spacer nicht erforderlich. In: Scheuch G. ed. Aerosole in der Inhalationstherapie III. München-Deisenhofen: Dustri Verlag Dr. Karl Feistle; 1999: 39-47
  • 78 Fachinformation Foster 100/6 Mikrogramm Druckgasinhalation. Stand: Dezember 2014
  • 79 European Medicines Agency, Committee for medical products for human use (CHMP). Guideline on the requirements for clinical documentation for orally inhaled Products (OIP) including the requirements for demonstration of therapeutic equivalence between two inhaled products for use in the treatment of Asthma and Chronic Obstructive Pulmonary Disease (COPD) in adults and for use in the treatment of Asthma in children and adolescents. London, 22 January 2009 Doc. Ref. CPMP/EWP/4151/00 Rev. 1
  • 80 Malpass J, Nagel M, Avvakoumova V. et al. Not all antistatic valved holding chambers have equivalent performance: An example why each valved holding chamber (VHC)-inhaler combination should be considered unique. Eur Respir J 2012; 40: P2154
  • 81 Bisgaard H, Anhøj J, Wildhaber JH. Spacer Devices. In: Bisgaard H, OʼCallaghan C, Smaldone GC. eds. Drug Delivery to the Lung. New York: Marcel Dekker; 2002: 389-420
  • 82 Lavorini F, Fontana GA. Targeting drugs to the airways: the role of spacer devices. Expert Opin. Drug Deliv 2009; 6: 91-102
  • 83 Newman SP. Spacer devices for metered dose inhalers. Clin Pharmakokinet 2004; 43: 349-360
  • 84 Slator L, von Hollen D, Sandell D. In vitro comparison of the effect of inhalation delay and flow rate on the emitted dose from three valved holding chambers. J Aerosol Med Pulm Drug Deliv 2014; 27 (Suppl. 01) S37-43
  • 85 Rau JL. Determinants of patient adherence to an aerosol regimen. Respir Care 2005; 50: 1346-1356
  • 86 Everard ML. Role of inhaler competence and contrivance in “difficult asthma”. Paediatr Respir Rev 2003; 4: 135-142
  • 87 Brennan VK, Osman LM, Graham H. et al. True device compliance: the need to consider both competence and contrivance. Respir Med 2005; 99: 97-102
  • 88 Shim C. Spacer disuse. Am J Respir Crit Care Med 2000; 161: A320
  • 89 Sanders MJ, Bruin R. Are we misleading users of respiratory spacer devices?. Prim Care Respir J 2013; 22: 466-467
  • 90 Gillissen A, Lecheler J. Asthma bronchiale: Vergleich von Arzteinschätzung und Patientenmeinung. Ergebnisse der AIRLife-Befragung. Dtsch Med Wochenschr 2004; 29 (Suppl. 01) 484-489
  • 91 Hirst PH, Bacon RE, Pitcairn GR. et al. A comparison of the lung deposition of budesonide from Easyhaler, Turbohaler and pMDI plus spacer in asthmatic patients. Respir Med 2001; 95: 720-727
  • 92 Bisgaard H. Automatic actuation of a dry powder inhaler into a nonelectrostatic spacer. Am J Respir Crit Care Med 1998; 157: 518-521
  • 93 Matida EA, Finlay WH, Rimkus M. et al. A new add-on spacer design concept for dry-powder inhalers. J Aerosol Sci 2004; 35: 823-833
  • 94 Needham M, Cocks P, Fradley G. Investigating the efficiency of the 3MConix™reverse cyclone technology for DPI drug delivery. [Cited 2013 29th April]; Available from: http://solutions.3m.com/3MContentRetrievalAPI/BlobServlet?lmd=1320272822000&locale=en_WW&assetType=MMM_Image&assetId=1319208813657&blobAttribute=ImageFile
  • 95 Parisini I, Cheng SJ, Symons DD. et al. Potential of a cyclone prototype spacer to improve in vitro dry powder delivery. Pharm Res 2014; 31: 1133-1145
  • 96 Fachinformation flutiform® 125 Mikrogramm/5 Mikrogramm Druckgasinhalation, Suspension. Stand der Information: Juni 2015
  • 97 Fachinformation FOSTER® 200 Mikrogramm/6 Mikrogramm Druckgasinhalation, Lösung. Stand der Information: September 2015
  • 98 Fachinformation Viani® mite Dosier-Aerosol 25 μg/50 μg Druckgasinhalation, Suspension, Viani® Dosier-Aerosol 25 μg/125 μg Druckgasinhalation, Suspension, Viani® forte Dosier-Aerosol 25 μg/250 μg Druckgasinhalation, Suspension. Stand der Information: April 2015
  • 99 Fachinformation Serkep®: Serkep 25 Mikrogramm/125 Mikrogramm Druckgasinhalation, Suspension; Serkep 25 Mikrogramm/250 Mikrogramm Druckgasinhalation, Suspension. Stand der Information: Mai 2015
  • 100 Fachinformation Alvesco 80 Mikrogramm-Dosieraerosol. Stand der Information: April 2014
  • 101 Fachinformation Budiair® 200 Mikrogramm, Druckgasinhalation, Lösung. Stand der Information: April 2015
  • 102 Fachinformation Flutide® 125 μg Dosier-Aerosol, Druckgasinhalation, Suspension; Flutide® forte 250 μg Dosier-Aerosol Druckgasinhalation, Suspension. Stand der Information: Oktober 2014
  • 103 Fachinformation Ventolair® 100 μg Dosieraerosol Druckgasinhalation, Lösung. Stand der Information: Mai 2014
  • 104 Fachinformation Ventolair® 250 μg Dosieraerosol Druckgasinhalation, Lösung. Stand der Information: Mai 2014
  • 105 Fachinformation Beclometason-ratiopharm® 0,05 mg Dosieraerosol 50 μg/Sprühstoß; Druckgasinhalation, Lösung; Beclometason-ratiopharm® 0,10 mg Dosieraerosol 100 μg/Sprühstoß; Druckgasinhalation, Lösung; Beclometason-ratiopharm® 0,20 mg Dosieraerosol 200 μg/Sprühstoß; Druckgasinhalation, Lösung; Beclometason-ratiopharm® 0,25 mg Dosieraerosol 250 μg/Sprühstoß; Druckgasinhalation, Lösung. Stand der Information: April 2014
  • 106 Fachinformation SalbuHEXAL® N Dosieraerosol, 100 Mikrogramm/Dosis Druckgasinhalation, Suspension. Stand der Information: November 2010
  • 107 Fachinformation Sanasthmax® 250 Mikrogramm Druckgasinhalation, Lösung. Stand der Information: April 2014
  • 108 Fachinformation Sultanol® Dosier-Aerosol 100 Mikrogramm/Dosis Druckgasinhalation, Suspension. Stand der Information: November 2013
  • 109 Fachinformation Serevent® Dosier-Aerosol 25 μg/Dosis, Druckgasinhalation, Suspension. Stand der Information: Februar 2015
  • 110 Fachinformation Salbutamol-ratiopharm® N Dosieraerosol 0,1 mg/Sprühstoß, Druckgasinhalation. Stand der Information: April 2015