Die Wirbelsäule 2017; 01(03): 203-218
DOI: 10.1055/s-0043-110064
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Intraoperatives neurophysiologisches Monitoring (IOM) in der Wirbelsäulenchirurgie

Ehab Shiban
,
Bernhard Meyer
,
Michael Stoffel
,
Martin Weinzierl
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
24. August 2017 (online)

Um die Sicherheit durch intraoperative Evaluierung der funktionellen Integrität der unterschiedlichen neuroanatomischen Systeme zu erhöhen, wird in der Wirbelsäulenchirurgie vermehrt ein intraoperatives neurophysiologisches Monitoring (IOM) eingesetzt. Dieser Beitrag beschreibt die Indikationen sowie die Vor- und Nachteile der einzelnen Modalitäten. Ein Algorithmus zur Unterscheidung echter, also pathophysiologisch relevanter Veränderungen und Artefaktmessungen wird vorgestellt, und Voraussetzungen für die erfolgreiche Anwendung werden diskutiert.

 
  • Literatur

  • 1 Nash Jr CL , Lorig RA, Schatzinger LA. et al. Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res 1977; 100-105
  • 2 Lesser RP, Raudzens P, Luders H. et al. Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 1986; 19: 22-25
  • 3 Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 1993; 32: 219-226
  • 4 Pechstein U, Cedzich C, Nadstawek J. et al. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery 1996; 39: 335-43 ; discussion 43-44
  • 5 Weinzierl MR, Reinacher P, Gilsbach JM. et al. Combined motor and somatosensory evoked potentials for intraoperative monitoring: intra- and postoperative data in a series of 69 operations. Neurosurg Rev 2007; 30: 109-16 ; discussion 116
  • 6 Pelosi L, Lamb J, Grevitt M. et al. Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol 2002; 113: 1082-1091
  • 7 Gonzalez AA, Jeyanandarajan D, Hansen C. et al. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus 2009; 27: E6
  • 8 Fehlings MG, Brodke DS, Norvell DC. et al. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference?. Spine (Phila Pa 1976) 2010; 35: S37-S46
  • 9 Lall RR, Lall RR, Hauptman JS. et al. Intraoperative neurophysiological monitoring in spine surgery: indications, efficacy, and role of the preoperative checklist. Neurosurg Focus 2012; 33: E10
  • 10 Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 2002; 19: 430-443
  • 11 Seyal M, Mull B. Mechanisms of signal change during intraoperative somatosensory evoked potential monitoring of the spinal cord. J Clin Neurophysiol 2002; 19: 409-415
  • 12 Nuwer MR, Dawson EG, Carlson LG. et al. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 1995; 96: 6-11
  • 13 Calancie B, Harris W, Broton JG. et al. „Threshold-level“ multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg 1998; 88: 457-470
  • 14 Langeloo DD, Lelivelt A, Louis Journee H. et al. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine (Phila Pa 1976) 2003; 28: 1043-1050
  • 15 Hilibrand AS, Schwartz DM, Sethuraman V. et al. Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg Am 2004; 86-A: 1248-1253
  • 16 Schwartz DM, Auerbach JD, Dormans JP. et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am 2007; 89: 2440-2449
  • 17 Hsu B, Cree AK, Lagopoulos J. et al. Transcranial motor-evoked potentials combined with response recording through compound muscle action potential as the sole modality of spinal cord monitoring in spinal deformity surgery. Spine (Phila Pa 1976) 2008; 33: 1100-1106
  • 18 Feng B, Qiu G, Shen J. et al. Impact of multimodal intraoperative monitoring during surgery for spine deformity and potential risk factors for neurological monitoring changes. J Spinal Disord Tech 2012; 25: E108-E114
  • 19 Lewis SJ, Gray R, Holmes LM. et al. Neurophysiological changes in deformity correction of adolescent idiopathic scoliosis with intraoperative skull-femoral traction. Spine (Phila Pa 1976) 2011; 36: 1627-1238
  • 20 Pastorelli F, Di Silvestre M, Vommaro F. et al. Intraoperative monitoring of somatosensory (SSEPs) and transcranial electric motor-evoked potentials (tce-MEPs) during surgical correction of neuromuscular scoliosis in patients with central or peripheral nervous system diseases. Eur Spine J 2015; Suppl 7 24 : 931-936
  • 21 Bhagat S, Durst A, Grover H. et al. An evaluation of multimodal spinal cord monitoring in scoliosis surgery: a single centre experience of 354 operations. Eur Spine J 2015; 24: 1399-1407
  • 22 Raynor BL, Padberg AM, Lenke LG. et al. Failure of intraoperative monitoring to detect postoperative neurologic deficits: a 25-year experience in 12,375 spinal surgeries. Spine (Phila Pa 1976) 2016; 41: 1387-1393
  • 23 MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 2002; 19: 416-429
  • 24 Kothbauer KF, Deletis V, Epstein FJ. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 1998; 4: e1
  • 25 Sala F, Palandri G, Basso E. et al. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 2006; 58: 1129-43 ; discussion 1143
  • 26 Jimenez JC, Sani S, Braverman B. et al. Palsies of the fifth cervical nerve root after cervical decompression: prevention using continuous intraoperative electromyography monitoring. J Neurosurg Spine 2005; 3: 92-97
  • 27 Bose B, Sestokas AK, Schwartz DM. Neurophysiological detection of iatrogenic C-5 nerve deficit during anterior cervical spinal surgery. J Neurosurg Spine 2007; 6: 381-385
  • 28 Gunnarsson T, Krassioukov AV, Sarjeant R. et al. Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine (Phila Pa 1976) 2004; 29: 677-684
  • 29 Quraishi NA, Lewis SJ, Kelleher MO. et al. Intraoperative multimodality monitoring in adult spinal deformity: analysis of a prospective series of one hundred two cases with independent evaluation. Spine (Phila Pa 1976) 2009; 34: 1504-1512
  • 30 Traynelis VC, Abode-Iyamah KO, Leick KM. et al. Cervical decompression and reconstruction without intraoperative neurophysiological monitoring. J Neurosurg Spine 2012; 16: 107-113
  • 31 Fehlings MG, Smith JS, Kopjar B. et al. Perioperative and delayed complications associated with the surgical treatment of cervical spondylotic myelopathy based on 302 patients from the AOSpine North America Cervical Spondylotic Myelopathy Study. J Neurosurg Spine 2012; 16: 425-432
  • 32 Resnick DK, Anderson PA, Kaiser MG. et al. Electrophysiological monitoring during surgery for cervical degenerative myelopathy and radiculopathy. J Neurosurg Spine 2009; 11: 245-252
  • 33 Fan D, Schwartz DM, Vaccaro AR. et al. Intraoperative neurophysiologic detection of iatrogenic C5 nerve root injury during laminectomy for cervical compression myelopathy. Spine (Phila Pa 1976) 2002; 27: 2499-2502
  • 34 Sharan A, Groff MW, Dailey AT. et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 15: electrophysiological monitoring and lumbar fusion. J Neurosurg Spine 2014; 21: 102-105
  • 35 Parker SL, Amin AG, Farber SH. et al. Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. J Neurosurg Spine 2011; 15: 130-135
  • 36 Yaylali I, Ju H, Yoo J. et al. Intraoperative neurophysiological monitoring in anterior lumbar interbody fusion surgery. J Clin Neurophysiol 2014; 31: 352-355
  • 37 Hamilton DK, Smith JS, Sansur CA. et al. Rates of new neurological deficit associated with spine surgery based on 108,419 procedures: a report of the scoliosis research society morbidity and mortality committee. Spine (Phila Pa 1976) 2011; 36: 1218-1228
  • 38 Ney JP, van der Goes DN, Nuwer MR. Does intraoperative neurophysiologic monitoring matter in noncomplex spine surgeries?. Neurology 2015; 85: 2151-2158
  • 39 Ney JP, van der Goes DN, Watanabe JH. Cost-benefit analysis: intraoperative neurophysiological monitoring in spinal surgeries. J Clin Neurophysiol 2013; 30: 280-286
  • 40 Sutter M, Eggspuehler A, Grob D. et al. The validity of multimodal intraoperative monitoring (MIOM) in surgery of 109 spine and spinal cord tumors. Eur Spine J 2007; Suppl 2 16 : S197-208
  • 41 Ghadirpour R, Nasi D, Iaccarino C. et al. Intraoperative neurophysiological monitoring for intradural extramedullary tumors: why not?. Clin Neurol Neurosurg 2015; 130: 140-149
  • 42 Pang D, Wilberger Jr JE . Tethered cord syndrome in adults. J Neurosurg 1982; 57: 32-47
  • 43 Sala F, Manganotti P, Grossauer S. et al. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 2010; 26: 473-490
  • 44 Pang D, Zovickian J, Moes GS. Retained medullary cord in humans: late arrest of secondary neurulation. Neurosurgery 2011; 68: 1500-1519 ; discussion 1519
  • 45 Skinner SA, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. J Clin Neurophysiol 2014; 31: 313-322
  • 46 Grundy BL. Monitoring of sensory evoked potentials during neurosurgical operations: methods and applications. Neurosurgery 1982; 11: 556-575
  • 47 Kothbauer K, Schmid UD, Seiler RW. et al. Intraoperative motor and sensory monitoring of the cauda equina. Neurosurgery 1994; 34: 702-707 ; discussion 707
  • 48 Romstock J, Strauss C, Fahlbusch R. Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg 2000; 93: 586-593
  • 49 Eager M, Shimer A, Jahangiri FR. et al. Intraoperative neurophysiological monitoring (IONM): lessons learned from 32 case events in 2069 spine cases. Am J Electroneurodiagnostic Technol 2011; 51: 247-263