Horm Metab Res 2017; 49(09): 680-686
DOI: 10.1055/s-0043-110769
Endocrine Care
© Georg Thieme Verlag KG Stuttgart · New York

Genetic Alterations in Pendrin (SLC26A4) Gene in Adult Hypothyroid Patients

Sourav Mukherjee
1   Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
,
Manalee Guha
1   Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
,
Bidisha Adhikary
1   Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
,
Biswabandhu Bankura
1   Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
,
Pubali Mitra
1   Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
,
Subhankar Chowdhury
2   Department of Endocrinology, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
,
Madhusudan Das
1   Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
› Author Affiliations
Further Information

Publication History

received 31 December 2016

accepted 03 May 2017

Publication Date:
17 July 2017 (online)

Abstract

Current study was aimed to screen the SLC26A4 gene in 127 nonautoimmune and noncongenital hypothyroid patients, who were under optimal iodine nutrition and devoid of any characteristics of Pendred syndrome from eastern part of Indian population. 8 single nucleotide variants/mutations were identified in heterozygous state in 20% patient population, which include 1 novel nonsynonymous (p.C18S), 1 novel intronic (g.942C>A), 3 known nonsynonymous (p.S23X, p.V239D, and p.I455F), and 3 known intronic (g.23034G>T, g.29641C>G, and g.33893T>C) variants. Only g.23034G>T was noted also in homozygous state in 2% patient population. However, Controls exhibited only the variations g.23034G>T and p.I455F. Therefore, present study reports for the first time that the observed novel variants in pendrin gene might be linked with autoimmune negative hypothyroidism, without any characteristics of Pendred syndrome and/or congenital hypothyroidism. While, all observed known variants/mutations were reported with either Pendred syndrome and/or congenital hypothyroidism earlier, but never with nonautoimmune adult hypothyroidism solely. Thereby, the absence of any features of Pendred syndrome and/or congenital hypothyroidism in patients with observed known nonsynonymous variants/mutations may be due to either heterozygous state of each variant or differential domain specific activity of ions trafficking in the respective organ. The analysis of amino acid change at least for p.C18S, p.S23X, and p.V239D in correlation with phenotypic characteristics of respective patients might assume a possible effect on protein structure and function. Altogether, we report for the first time that genetical variations in SLC26A4 gene could play an important role in development of nonautoimmune adult hypothyroidism.

Supplementary Material

 
  • References

  • 1 Bensenor IM, Olmos RD, Lotufo PA. Hypothyroidism in the elderly: diagnosis and management. Clin Interv Aging 2012; 7: 97-111
  • 2 Bavadam L. Imposing iodine. Frontline 2006; 23: 1-14
  • 3 Pandav CS, Yadav K, Srivastava R, Pandav R, Karmarkar MG. Iodine deficiency disorders (IDD) control in India. Indian J Med Res 2013; 138: 418-433
  • 4 Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 1996; 379: 458-460
  • 5 Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 1997; 17: 411-422
  • 6 Coyle B, Reardon W, Herbrick JA, Tsui LC, Gausden E, Lee J, Coffey R, Grueters A, Grossman A, Phelps PD, Luxon L, Kendall-Taylor P, Scherer SW, Trembath RC. Molecular analysis of the PDS gene in Pendred syndrome. Hum Mol Genet 1998; 7: 1105-1112
  • 7 Grasberger H. Defects of thyroidal hydrogen peroxide generation in congenital hypothyroidism. Mol Cell Endocrinol 2010; 322: 99-106
  • 8 Ieiri T, Cochaux P, Targovnik HM, Suzuki M, Shimoda S, Perret J, Vassart G. A 3′ splice site mutation in the thyroglobulin gene responsible for congenital goiter with hypothyroidism. J Clin Invest 1991; 88: 1901-1905
  • 9 Moreno JC, Visser TJ. New phenotypes in thyroid dyshormonogenesis: hypothyroidism due to DUOX2 mutations. Endocr Dev 2007; 10: 99-117
  • 10 Guria S, Bankura B, Balmiki N, Pattanayak AK, Das TK, Sinha A, Chakrabarti S, Chowdhury S, Das M. Functional analysis of thyroid peroxidase gene mutations detected in patients with thyroid dyshormonogenesis. Int J Endocrinol. 2014; 390121
  • 11 Bizhanova A, Kopp P.. The sodium-iodide symporter nis and pendrin in iodide homeostasis of the thyroid. Endocrinology 2009; 150: 1084-1090
  • 12 Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD, Green ED. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 2000; 141: 839-845
  • 13 Kopp P. Thyroid hormone synthesis: thyroid iodine metabolism. In: Braverman L, Utiger R. (eds.) Werner and Ingbar’s the thyroid: a fundamental and clinical text. 9th ed. New York: Lippincott Williams Wilkins; 2005: 52-76
  • 14 Weiss SJ, Philp NJ, Grollman EF. Effect of thyrotropin on iodide efflux in FRTL-5 cells mediated by Ca2+ . Endocrinology 1984; 114: 1108-1113
  • 15 Nilsson M, Björkman U, Ekholm R, Ericson LE. Iodide transport in primary cultured thyroid follicle cells: evidence of a TSH-regulated channel mediating iodide efflux selectively across the apical domain of the plasma membrane. Eur J Cell Biol 1990; 52: 270-281
  • 16 Nilsson M, Björkman U, Ekholm R, Ericson LE. Polarized efflux of iodide in porcine thyrocytes occurs via a cAMP-regulated iodide channel in the apical plasma membrane. Acta Endocrinol (Copenh.) 1992; 126: 67-74
  • 17 Pesce L, Bizhanova A, Caraballo JC, Westphal W, Butti ML, Comellas A, Kopp P.TSH. Regulates pendrin membrane abundance and enhances iodide efflux in thyroid cells. Endocrinology 2012; 153: 512-521
  • 18 Hadj-Kacem H, Kallel R, Belguith-Maalej S, Mnif M, Charfeddine I, Ghorbel A, Abid M, Ayadi H, Masmoudi S. SLC26A4 variations among Graves’ hyper-functioning thyroid gland. Dis Markers 2010; 29: 63-69
  • 19 Rotman-Pikielny P, Hirschberg K, Maruvada P, Suzuki K, Royaux IE, Green ED, Kohn LD, Lippincott-Schwartz J, Yen PM. Retention of pendrin in the endoplasmic reticulum is a major mechanism for Pendred syndrome. Hum Mol Genet 2002; 11: 2625-2633
  • 20 Cho MA, Jeong SJ, Eom SM, Park HY, Lee YJ, Park SE, Park SY, Rhee Y, Kang ES, Ahn CW, Cha BS, Lee EJ, Kim KR, Lee HC, Lim SK. The H723R mutation in the PDS/SLC26A4 gene is associated with typical Pendred syndrome in Korean patients. Endocrine 2006; 30: 237-243
  • 21 Van Hauwe P, Everett LA, Coucke P, Scott DA, Kraft ML, Ris-Stalpers C, Bolder C, Otten B, de Vijlder JJ, Dietrich NL, Ramesh A, Srisailapathy SC, Parving A, Cremers CW, Willems PJ, Smith RJ, Green ED, Van Camp G. Two frequent missense mutations in Pendred syndrome. Hum Mol Genet 1998; 7: 1099-1104
  • 22 Pera A, Dossena S, Rodighiero S, Gandía M, Bottà G, Meyer G, Moreno F, Nofziger C, Hernández-Chico C, Paulmichl M. Functional assessment of allelic variants in the SLC26A4 gene involved in Pendred syndrome and nonsyndromic EVA. Proc Natl Acad Sci U S A 2008; 105: 18608-18613
  • 23 Adhikary B, Ghosh S, Paul S, Bankura B, Pattanayak AK, Biswas S, Maity B, Das M. Spectrum and frequency of GJB2, GJB6 and SLC26A4 gene mutations among nonsyndromic hearing loss patients in eastern part of India. Gene 2015; 573: 239-245
  • 24 Pfarr N, Borck G, Turk A, Napiontek U, Keilmann A, Müller-Forell W, Kopp P, Pohlenz J. Goitrous congenital hypothyroidism and hearing impairment associated with mutations in the TPO and SLC26A4/PDS genes. J Clin Endocrinol Metab 2006; 91: 2678-2681
  • 25 Kühnen P, Turan S, Fröhler S, Güran T, Abali S, Biebermann H, Bereket A, Grüters A, Chen W, Krude H. Identification of PENDRIN (SLC26A4) mutations in patients with congenital hypothyroidism and “apparent” thyroid dysgenesis. J Clin Endocrinol Metab 2014; 99: E169-E176
  • 26 Banghova K, Cinek O, Al Taji E, Zapletalova J, Vidura R, Lebl J. Thyroidectomy in a patient with multinodular dyshormonogenetic goitre–a case of Pendred syndrome confirmed by mutations in the PDS/SLC26A4 gene. J Pediatr Endocrinol Metab 2008; 21: 1179-1184
  • 27 Alasti F, Van Camp G, Smith RJH. Pendred Syndrome/DFNB4. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K. (eds.) GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993. –2016
  • 28 Rastogi MV, LaFranchi SH. Congenital hypothyroidism. Orphanet J Rare Dis 2010; 5: 17
  • 29 Fu C, Zheng H, Zhang S, Chen Y, Su J, Wang J, Xie B, Hu X, Fan X, Luo J, Li C, Chen R, Shen Y, Chen S. Mutation screening of the SLC26A4 gene in a cohort of 192 Chinese patients with congenital hypothyroidism. Arch Endocrinol Metab 2016; 60: 323-327
  • 30 Sandell EB, Kolthoff IM. Micro determination of iodide by a catalytic method. Mikrochim Acta 1937; 1: 9-25
  • 31 Pino S, Fang SL, Braverman LE. Ammonium persulfate: a safe alternative oxidizing reagent for measuring urinary iodide. Clin Chem 1996; 42: 239-243
  • 32 Chen N, Tranebjærg L, Rendtorff ND, Schrijver I. Mutation analysis of slc26a4 for pendred syndrome and nonsyndromic hearing loss by high-resolution melting. J Mol Diagn 2011; 13: 416-426
  • 33 Blons H, Feldmann D, Duval V, Messaz O, Denoyelle F, Loundon N, Sergout-Allaoui A, Houang M, Duriez F, Lacombe D, Delobel B, Leman J, Catros H, Journel H, Drouin-Garraud V, Obstoy MF, Toutain A, Oden S, Toublanc JE, Couderc R, Petit C, Garabédian EN, Marlin S. Screening of SLC26A4 (PDS) gene in Pendred's syndrome: a large spectrum of mutations in France and phenotypic heterogeneity. Clin Genet 2004; 66: 333-340
  • 34 Park HJ, Shaukat S, Liu XZ, Hahn SH, Naz S, Ghosh M, Kim HN, Moon SK, Abe S, Tukamoto K, Riazuddin S, Kabra M, Erdenetungalag R, Radnaabazar J, Khan S, Pandya A, Usami SI, Nance WE, Wilcox ER, Riazuddin S, Griffith AJ. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: global implications for the epidemiology of deafness. J Med Genet 2003; 40: 242-248
  • 35 Tekin M, Akçayöz D, Comak E, Boğoçlu G, Duman T, Fitoz S, Ilhan I, Akar N. Screening the SLC26A4 gene in probands with deafness and goiter (Pendred syndrome) ascertained from a large group of students of the schools for the deaf in Turkey. Clin Genet 2003; 64: 371-374
  • 36 Anwar S, Riazuddin S, Ahmed ZM, Tasneem S. Ateeq-ul-Jaleel Khan SY, Griffith AJ, Friedman TB, Riazuddin S. SLC26A4 mutation spectrum associated with DFNB4 deafness and Pendred’s syndrome in Pakistanis. J Hum Genet 2009; 54: 266-270
  • 37 Li J, Zhang F, Gao J, Cai Z, Zhao Q, Xing Y, Xu J, Liu Y, Shao L, Che R, Wei Z, He L. An association study of the SLC26A4 gene in children with mental retardation. Neurosci Lett 2009; 457: 155-158
  • 38 Choi BY, Stewart AK, Nishimura KK, Cha WJ, Seong MW, Park SS, Kim SW, Chun YS, Chung JW, Park SN, Chang SO, Kim CS, Alper SL, Griffith AJ, Oh SH. Efficient molecular genetic diagnosis of enlarged vestibular aqueducts in East Asians. Genet Test Mol Biomarkers 2009; 13: 679-687
  • 39 Betts MJ, Russell RB. Amino Acid Properties and Consequences of Substitutions. In: Barnes BM, Gray IC. (eds.) Bioinformatics for Geneticists. Chichester, UK: Wiley; 2003.
  • 40 Rendtorff ND, Schrijver I, Lodahl M, Rodriguez-Paris J, Johnsen T, Hansén EC, Nickelsen LA, Tümer Z, Fagerheim T, Wetke R, Tranebjaerg L. SLC26A4 mutation frequency and spectrum in 109 danish pendred syndrome/DFNB4 probands and a report of nine novel mutations. Clin Genet 2013; 84: 388-391
  • 41 Walsh T, Abu Rayan A, Abu Sa'ed J, Shahin H, Shepshelovich J, Lee MK, Hirschberg K, Tekin M, Salhab W, Avraham KB, King MC, Kanaan M. Genomic analysis of a heterogeneous mendelian phenotype: multiple novel alleles for inherited hearing loss in the palestinian population. Hum Genomics 2006; 2: 203-211
  • 42 Dossena S, Nofziger C, Brownstein Z, Kanaan M, Avraham KB, Paulmichl M. Functional characterization of pendrin mutations found in the Israeli and Palestinian populations. Cell Physiol Biochem 2011; 28: 477-484
  • 43 Golstein P, Abramow M, Dumont JE, Beauwens R. The iodide channel of the thyroid: a plasma membrane vesicle study. Am J Physiol 1992; 263: C590-C597
  • 44 Iosco C, Cosentino C, Sirna L, Romano R, Cursano S, Mongia A, Pompeo G, di Bernardo J, Ceccarelli C, Tallini G, Rhoden KJ. Anoctamin 1 is apically expressed on thyroid follicular cells and contributes to atp- and calcium-activated iodide efflux. Cell Physiol Biochem 2014; 34: 966-980
  • 45 Wolff J. What is the role of pendrin?. Thyroid 2005; 15: 346-348
  • 46 Kopp P, Pesce L, Solis-S JC. Pendred syndrome and iodide transport in the thyroid. Trends Endocrinol Metab 2008; 19: 260-268