Z Gastroenterol 2017; 55(09): 872-880
DOI: 10.1055/s-0043-116387
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Gut microbiota and colorectal cancer: insights into pathogenesis for novel therapeutic strategies

Darmflora und Darmkrebs: Einblicke in die Pathogenese für neue Therapiestrategien
Yongbo Kang*
1   Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
2   Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
,
Wei Pan*
3   Faculty of Foreign Languages and Cultures, Kunming University of Science and Technology, Kunming, Yunnan, China
,
Yue Cai
1   Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
4   Pathogen biology Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
› Author Affiliations
Further Information

Publication History

16 February 2017

07 July 2017

Publication Date:
12 September 2017 (online)

Abstract

Colorectal cancer (CRC), as a leading cause of cancer-related death, is triggered by the complex interplay of host genetics and environmental factors. Mounting evidence has shed light on the association of the gut microbiota dysbiosis with CRC. In CRC experimental models, certain gut microbial strains have been shown to inhibit or attenuate immune responses, indicating that specific species among intestinal commensal bacteria may play either a pathogenic or a protective role in the development of CRC. Oral intake of probiotics/prebiotics can therefore serve as a therapeutic approach for CRC treatment. Microbiota studies in cancer, however, are still at the early stage, lack of quantitative data for clinic application. Fortunately, sequencing-based technologies are a boon to further investigation on the association of the intestinal bacterial flora and human diseases. This review considers the evidence for the role of the gut microbiota in CRC development and progression, responsiveness to immune system, and the related therapeutic applications of probiotics/prebiotics.

Zusammenfassung

Darmkrebs (CRC), als eine Hauptursache für die krebsbedingten Todesfälle, wird durch das komplexe Zusammenspiel von Wirtsgenetik- und Umweltfaktoren verursacht. Die wachsende Gewissheit hat die Assoziation der Dysbiose der Darmflora mit CRC deutlich gemacht. In CRC-experimentellen Modellen wurde gezeigt, dass bestimmte Bakterienstämme des Darms Immunantworten hemmen oder abschwächen, was darauf hindeutet, dass bestimmte Arten von intestinale kommensalen Bakterien entweder eine pathogene oder eine schützende Rolle bei der Entwicklung von CRC spielen können. Die orale Einnahme von Probiotika/Präbiotika kann daher als Therapieansatz für die CRC-Behandlung dienen. Die Krebsforschungen von Mikrobenflora sind jedoch noch in der Frühphase, mangelnde quantitative Daten für die klinische Anwendung. Glücklicherweise sind sequenzbasiertee Technologien ein Segen für weitere Untersuchungen über die Assoziation der intestinalen bakteriellen Flora und menschlichen Krankheiten. Die Übersicht betrachtet die Beweise für die Rolle der Darmflora in der Entwicklung und Progression von CRC, Ansprechbarkeit des Immunsystems und die entsprechenden therapeutischen Anwendungen von Probiotika/Präbiotika. 

* Equal contribution


 
  • References

  • 1 Jemal A, Bray F, Center MM. et al. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90
  • 2 Kuwada SK, Neklason DW, Burt RW. Biology and Molecular Genetics of Colorectal Cancer. Humana Press; 2002
  • 3 Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001; 1: 55-67
  • 4 Rodrigues NR, Rowan A, Kerr IB. et al. p53 mutations in colorectal cancer. Proc Natl Acad Sci USA 1990; 87: 7555-7559
  • 5 Akiyama Y, Sato H, Yamada T. et al. Germ-Line Mutation of the hMSH6/GTBP Gene in an Atypical Hereditary Nonpolyposis Colorectal Cancer Kindred. Cancer Res 1997; 57: 3920-3923
  • 6 Liu W, Dong X, Mai M. et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet 2000; 26: 146-147
  • 7 Guarner F, Malagelada JR. Gut flora in health and disease. Lancet (London, England) 2003; 361: 512-519
  • 8 Salminen S, Bouley C, Boutronruault MC. et al. Functional food science and gastrointestinal physiology and function. British Journal of Nutrition 1998; 80: S147-S171
  • 9 Azcárateperil MA, Sikes M, Brunobárcena JM. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer?. Ajp Gastrointestinal & Liver Physiology 2011; 301: 401-424
  • 10 Zhu Q, Gao R, Wu W. et al. The role of gut microbiota in the pathogenesis of colorectal cancer. Tumor Biology 2013; 34: 1285-1300
  • 11 Hope ME, Hold GL, Kain R. et al. Sporadic colorectal cancer – role of the commensal microbiota. Fems Microbiology Letters 2005; 244: 1-7
  • 12 Ferlay J, Soerjomataram I, Dikshit R. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer 2015; 136: E359-E386
  • 13 Torre LA, Bray F, Siegel RL. et al. Global cancer statistics, 2012. Ca A Cancer Journal for Clinicians 2015; 65: 87-108
  • 14 Hope ME, Hold GL, Kain R. et al. Sporadic colorectal cancer – role of the commensal microbiota. Fems Microbiology Letters 2005; 244: 1-7
  • 15 Rabeneck L, Davila JA, El-Serag HB. Is there a true "shift" to the right colon in the incidence of colorectal cancer?. American Journal of Gastroenterology 2003; 98: 1400-1409
  • 16 Vogelstein B, Kinzler KW. eds. The Genetic Basis of Human Cancer. New York: McGraw-Hill; 1998
  • 17 Lammi L, Somer M. et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004; 74: 1043-1050
  • 18 Zhu Y, Luo TM, Jobin C. et al. Gut Microbiota and Probiotics in Colon Tumorigenesis. Cancer Lett 2011; 309: 119-127
  • 19 Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host & Microbe 2014; 15: 317-328
  • 20 Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology 2014; 12: 661
  • 21 Gagnière J, Raisch J, Veziant J. et al. Gut microbiota imbalance and colorectal cancer. World Journal of Gastroenterology 2016; 22: 501-518
  • 22 Owen RW. Faecal steroids and colorectal carcinogenesis. Scand J Gastroenterol 1997; 222: 76-82
  • 23 Reddy BS, Mastromarino A, Wynder EL. Further leads on metabolic epidemiology of large bowel cancer. Cancer Res 1975; 35: 3403
  • 24 Kado S, Uchida K, Funabashi H. et al. Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res 2001; 61: 2395-2398
  • 25 Takaku K, Oshima M, Miyoshi H. et al. Intestinal Tumorigenesis in Compound Mutant Mice of both Dpc4 (Smad4) and Apc Genes. Cell 1998; 92: 645-656
  • 26 Engle SJ, Ormsby I, Pawlowski S. et al. Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. Cancer Res 2002; 62: 6362-6366
  • 27 Erdman SE, Poutahidis T, Tomczak M. et al. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol 2003; 162: 691-702
  • 28 Zhu Q, Jin Z, Wu W. et al. Analysis of the Intestinal Lumen Microbiota in an Animal Model of Colorectal Cancer. PLoS One 2014; 9: e90849-e90849
  • 29 Ahn J, Sinha R, Pei Z. et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 2013; 105: 1907-1911
  • 30 Gao Z, Guo B, Gao R. et al. Microbiota disbiosis is associated with colorectal cancer. Frontiers in Microbiology 2015; 6: 20
  • 31 Wang T, Cai G, Qiu Y. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. The ISME Journal 2012; 6: 320-329
  • 32 Chen W, Liu F, Ling Z. et al. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 2012; 7: e39743
  • 33 Zackular JP, Rogers MA, Th RM. et al. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prevention Research 2014; 7: 1112-1121
  • 34 Wu N, Yang X, Zhang R. et al. Dysbiosis Signature of Fecal Microbiota in Colorectal Cancer Patients. Microb Ecol 2013; 66: 462-470
  • 35 Si MM. The clinical importance of emerging Campylobacter species. Nature Reviews Gastroenterology & Hepatology 2011; 8: 669-685
  • 36 Zheng J, Meng J, Zhao S. et al. Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires Campylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-kappaB. Infect Immun 2008; 76: 4498-4508
  • 37 Ohigashi S, Sudo K, Kobayashi D. et al. Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer. Dig Dis Sci 2013; 58: 1717
  • 38 Sobhani I, Tap J, Roudotthoraval F. et al. Microbial Dysbiosis in Colorectal Cancer (CRC) Patients. Plos One 2012; 6: e16393
  • 39 Uronis JM, Mühlbauer M, Herfarth HH. et al. Modulation of the Intestinal Microbiota Alters Colitis-Associated Colorectal Cancer Susceptibility. Plos One 2012; 4: e6026
  • 40 Arthur JC, Jobin C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012; 338: 120-123
  • 41 Wei Z, Cao S, Liu S. et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism. Oncotarget 2016; 7: 46158
  • 42 Wang T, Cai G, Qiu Y. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. The ISME Journal 2011; 6: 320-329
  • 43 Wu S, Rhee KJ, Albesiano E. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature medicine 2009; 15: 1016-1022
  • 44 Waidmann M, Bechtold O, Frick JS. et al. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology 2003; 125: 162-177
  • 45 Weir TL, Manter DK, Sheflin AM. et al. Stool Microbiome and Metabolome Differences between Colorectal Cancer Patients and Healthy Adults. Plos One 2013; 8: e70803
  • 46 Scheppach W, Weiler F. The butyrate story: old wine in new bottles?. Current Opinion in Clinical Nutrition & Metabolic Care 2004; 7: 563-567
  • 47 Williams AE, Coxhead MJ, Mathers CJ. Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms. Proceedings of the Nutrition Society 2003; 62: 107-115
  • 48 Png CW, Lindén SK, Gilshenan KS. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. American Journal of Gastroenterology 2010; 105: 2420
  • 49 Zella GC, Hait EJ, Glavan T. et al. Distinct microbiome in pouchitis compared to healthy pouches in ulcerative colitis and familial adenomatous polyposis. Inflammatory Bowel Diseases 2011; 17: 1092-1100
  • 50 Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer and Metastasis Reviews 2004; 23: 77-99
  • 51 Hedin C, Whelan K, Lindsay JO. Evidence for the use of probiotics and prebiotics in inflammatory bowel disease: a review of clinical trials. Proceedings of the Nutrition Society 2007; 66: 307-315
  • 52 Whelan K. Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Current Opinion in Clinical Nutrition & Metabolic Care 2011; 14: 581
  • 53 Wollowski I, Rechkemmer G, Poolzobel BL. Protective role of probiotics and prebiotics in colon cancer. American Journal of Clinical Nutrition 2001; 73: 451S
  • 54 Kang Y, Zhang X, Cai Y. et al. Gut microbiota and metabolic disease: from pathogenesis to new therapeutic strategies. Reviews in Medical Microbiology 2016; 27: 141-152
  • 55 Kang YB, Cai Y, Zhang H. Gut microbiota and allergy/asthma: From pathogenesis to new therapeutic strategies. Allergologia et Immunopathologia 2017; 45: 305-309
  • 56 Kang Y, Cai Y, Zhang X. et al. Altered gut microbiota in RA: implications for treatment. Zeitschrift Fur Rheumatologie 2017; 61: 451-457
  • 57 Brisbin JT, Gong J, Parvizi P. et al. Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clinical & Vaccine Immunology Cvi 2010; 17: 1337-1343
  • 58 Ou CC, Lin SL, Tsai JJ. et al. Heat-Killed Lactic Acid Bacteria Enhance Immunomodulatory Potential by Skewing the Immune Response toward Th1 Polarization. Journal of Food Science 2011; 76: M260-M267
  • 59 Sierra S, Lara-Villoslada F, Sempere L. et al. Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe 2010; 16: 195
  • 60 Lee JH, Valeriano VD, Shin YR. et al. Genome sequence of Lactobacillus mucosae LM1, isolated from piglet feces. Journal of Bacteriology 2012; 194: 4766
  • 61 Gamallat Y, Meyiah A, Kuugbee ED. et al. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2016; 83: 536
  • 62 Lenoir M, Del Carmen S, Cortes-Perez NG. et al. Lactobacillus casei BL23 regulates Treg and Th17 T-cell populations and reduces DMH-associated colorectal cancer. Journal of gastroenterology 2016; 51: 862-873
  • 63 Chang JH, Shim YY, Cha SK. et al. Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon. Journal of Medical Microbiology 2012; 61: 361-368
  • 64 Bertkova I, Hijova E, Chmelarova A. et al. The effect of probiotic microorganisms and bioactive compounds on chemically induced carcinogenesis in rats. Neoplasma 2010; 57: 422-428
  • 65 Zhu J, Zhu C, Ge S. et al. Lactobacillus salivarius Ren prevent the early colorectal carcinogenesis in 1, 2‐dimethylhydrazine‐induced rat model. Journal of Applied Microbiology 2014; 117: 208-216
  • 66 Dubey V, Ghosh AR, Bishayee K. et al. Appraisal of the anti-cancer potential of probiotic Pediococcus pentosaceus GS4 against colon cancer: in vitro and in vivo approaches. Journal of Functional Foods 2016; 23: 66-79
  • 67 Singh J, Rivenson A, Tomita M. et al. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 1997; 18: 833-841
  • 68 Leu RKL, Hu Y, Brown IL. et al. Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis 2010; 31: 246-251
  • 69 Horie H, Zeisig M, Hirayama K. et al. Probiotic mixture decreases DNA adduct formation in colonic epithelium induced by the food mutagen 2-amino-9H-pyrido[2,3-b]indole in a human-flora associated mouse model. European Journal of Cancer Prevention 2003; 12: 101-107
  • 70 Chung EJ, Do EJ, Kim SY. et al. Combination of metformin and VSL#3 additively suppresses western-style diet induced colon cancer in mice. European Journal of Pharmacology 2016; 794: 1-7
  • 71 Kuugbee ED, Shang X, Gamallat Y. et al. Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer. Digestive Diseases & Sciences 2016; 61: 2908-2920